
ENERGYPLUS™

COPYRIGHT © 1998-2002 THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS AND THE REGENTS OF THE

UNIVERSITY OF CALIFORNIA THROUGH THE ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY.

ALL RIGHTS RESERVED. NO PART OF THIS MATERIAL MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY

ANY MEANS WITHOUT THE PRIOR WRITTEN PERMISSION OF THE UNIVERSITY OF ILLINOIS OR THE ERNEST ORLANDO

LAWRENCE BERKELEY NATIONAL LABORATORY.

ENERGYPLUS IS A TRADEMARK OF THE US DEPARTMENT OF ENERGY.

Guide for Module Developers

Everything You Need to Know about EnergyPlus
Calculational Development
(but were hesitant to ask)

Date: April 26, 2002

 2

TABLE OF CONTENTS

4/26/02 I

Introduction ...1

Modules in EnergyPlus...2

What is a module anyway? ... 2

Program Modules.. 2

Data Only Modules.. 2

What is a module developer?.. 2

Input Concepts..3

Input Data Dictionary... 3

Input Data File... 4

Input Considerations ... 5

Module Structure...8

Module Outline.. 8

Module Example ... 10

How it fits together ..26

Top Level Calling Tree.. 26

High Level HVAC Calling Tree.. 26

Air System Calling Tree .. 27

Plant Supply Calling Tree.. 27

Zone Equipment Calling Tree ... 28

Inserting the New Module into the Program.. 29

Considerations for Legacy Codes ... 31

Code Readability vs. Speed of Execution ... 32

EnergyPlus Services...33

Global Data ... 33

Input Services ... 33

GetNumObjectsFound .. 33

TABLE OF CONTENTS

4/26/02 II

GetObjectItem ... 33

GetNodeNums .. 34

GetObjectItemNum ... 35

FindItemInList.. 35

SameString ... 35

VerifyName ... 35

Schedule Services .. 35

GetScheduleIndex... 38

GetCurrentScheduleValue .. 38

Performance Curve Services .. 38

GetCurveIndex .. 38

CurveValue ... 39

Fluid Property Services ... 39

Using Fluid Property Routines in EnergyPlus Modules........................... 39

Table 1. Regions for Fluid Properties .. 40

Fluid Property Data and Expanding the Refrigerants Available to EnergyPlus 40

Other Useful Utilities ... 44

GetNewUnitNumber .. 44

FindUnitNumber .. 44

Weather Services.. 44

Error Messages... 44

Flags and Parameters... 45

Parameters.. 45

Simulation Flags.. 45

Psychrometric services ... 48

rhoairfn(pb,tdb,w) .. 48

TABLE OF CONTENTS

4/26/02 III

cpairfn(w,T) ... 48

PSYDPT(TDB,TWB,PB) ... 48

PSYDPW(W,PB) ... 48

PSYHTW(TDB,W)... 48

PSYHTR(TDB,RH,PB) .. 49

PSYTHW(H,W) ... 49

PSYRHT(TDB,W,PB).. 49

PSYTWD(TDB,W,PB) ... 49

PSYVTW(TDB,W,PB) ... 49

PSYWDP(TDP,PB) ... 49

PSYWTH(TDB,H).. 49

PSYWTP(TDB,TWB,PB)... 49

PSYWTR(TDB,RH,PB) ... 49

SATUPT(T) ... 49

SATUTH(H,PB) ... 50

SATUTP(P) ... 50

HVAC Network..51

Branches, Connectors, and Nodes ... 51

Figure 1. HVAC Input Diagram.. 52

Nodes in the simulation... 53

Data Flow in an HVAC Component Module.. 54

Node Mass Flow Variables ... 57

Output ...59

How Do I Output My Variables?.. 59

Table 2. SetupOutputVariable Arguments... 60

Output Variable Dos and Don’ts.. 61

TABLE OF CONTENTS

4/26/02 IV

What Variables Should I Output?.. 61

Output Variable Naming Conventions... 61

What are Meters?.. 61

How Do I Create A Meter? .. 62

Rules for Meter Variables.. 62

Important Rules for Module Developers...64

Appendix A. DataGlobals Module ...65

Appendix B. DataEnvironment Module ...69

MODULE DEVELOPER'S GUIDE INTRODUCTION

4/26/02 1

Introduction

EnergyPlus is a modular simulation program designed to model the performance, energy
consumption and pollutant production of a building. EnergyPlus models energy transport
through the building envelope, heat gains within the building, and all the HVAC
equipment used to heat and cool the building. The program is designed for ease of
development. The concept is that many people will contribute to EnergyPlus and the
program structure has been designed to make this possible.

EnergyPlus is written entirely in Fortran 90. Fortran 90 is a powerful modern
programming language with many features. Using Fortran 90 it is possible to program in
many different styles. The EnergyPlus team has chosen a particular style that
emphasizes code extensibility (ease of development), understandability, maintainability,
and robustness. Less emphasis was placed on program speed and size. Fortran 90 has
all the features that permit the creation of readable, maintainable, and extensible code.
In particular, the ability to create data and program modules with various levels of data
hiding allows EnergyPlus to be built out of semi-independent modules. This allows a new
EnergyPlus developer to concentrate on programming a single component without
having to learn the entire program and data structure.

The EnergyPlus programming style is described in the EnergyPlus Programming
Standard. The Programming Standard should be consulted for details such as variable
and subroutine naming conventions. In this document, we will describe the steps a
developer must follow to create a new EnergyPlus component model. In particular, we
will assume the developer wishes to simulate an HVAC component that cannot yet be
modeled by EnergyPlus.

MODULE DEVELOPER'S GUIDE MODULES IN ENERGYPLUS

4/26/02 2

Modules in EnergyPlus

What is a module anyway?

Program Modules

A module is a Fortran 90 programming construct that can be used in various ways. In
EnergyPlus, its primary use is to segment a rather large program into smaller, more
manageable pieces. Each module is a separate package of source code stored on a
separate file. The entire collection of modules, when compiled and linked, forms the
executable code of EnergyPlus.

Each module contains source code for closely related data structures and procedures.
For instance, the WeatherManager module contains all the weather handling routines in
EnergyPlus. The module is contained in the file WeatherManager.f90. Another example
is PlantPumps. This module contains all the code to simulate pumps in EnergyPlus. It is
contained in file PlantPumps.f90.

Of course dividing a program into modules can be done in various ways. We have
attempted to create modules that are as self-contained as possible. The philosophy
that has been used in creating EnergyPlus is contained in the Programming Standard
reference document. Logically, the modules in EnergyPlus form an inverted tree
structure. At the top is EnergyPlus. Just below that are ProcessInput and
ManageSimulation. At the bottom are the modules such as HVACDamperComponent
that model the actual HVAC components.

Appendix C to this document describes the “manager” structure that has been
implemented in EnergyPlus.

Data Only Modules

EnergyPlus also uses modules that contain only data. These modules form one of the
primary ways data is structured and shared in EnergyPlus. An example is the
DataEnvironment module. Many parts of the program need access to the outdoor
conditions. All of that data is encapsulated in DataEnvironment. Modules that need this
data obtain access through a Fortran USE statement. Without such access, modules
cannot use or change this data.

What is a module developer?

A module developer is someone who is going to add to the simulation capabilities of
EnergyPlus. Someone, for instance, who is interested in adding code to model a new
type of HVAC equipment. The most straightforward way of doing this is to create a new
program module – hence the term “module developer”. Another kind of module
developer would be the adaptation of an existing “legacy” code to EnergyPlus.

In EnergyPlus, the first step in creating a new component model is to define the input.
So, before we discuss modules in more detail, we must first describe the EnergyPlus
input.

MODULE DEVELOPER'S GUIDE INPUT CONCEPTS

4/26/02 3

Input Concepts

In EnergyPlus, input and output are accomplished by means of ASCII (text) files. On the
input side, there are two files:

1) the Input Data Dictionary (IDD) that describes the types (classes) of input objects
and the data associated with each object;

2) the Input Data File (IDF) that contains all the data for a particular simulation.

Each EnergyPlus module is responsible for getting its own input. Of course, EnergyPlus
provides services to the module that make this quite easy. The first task of a module
developer is to design and insert a new entry into the Input Data Dictionary.

Input Data Dictionary

An entry in the IDD consists of comma-separated text terminated by a semicolon. For
instance:

COIL:Water:SimpleHeating,
 A1 , \field Coil Name
 \type alpha
 \reference HeatingCoilName
 A2 , \field Available Schedule
 \type object-list
 \object-list ScheduleNames
 N1 , \field UA of the Coil
 \units W/K
 N2 , \field Max Water Flow Rate of Coil
 \units kg/s
 A3 , \field Coil_Water_Inlet_Node
 A4 , \field Coil_Water_Outlet_Node
 A5 , \field Coil_Air_Inlet_Node
 A6 ; \field Coil_Air_Outlet_Node

This entry defines a simple water-heating coil and specifies all of the input data needed
to model it. The following rules apply.

1) The first element COIL:Water:Simple Heating is the class name (also called a
keyword or key). This class name must be unique in the IDD. The maximum length
for the class name is 40 characters. Embedded spaces are allowed and are
significant.

2) The initial line of an entry must contain a comma or a semicolon.

3) Commas separate fields. They always act as separators – thus there is no way to
include a comma in a class name or as part of a data field.

4) Similarly, semicolons are terminators – a semicolon is always interpreted as the end
of an EnergyPlus “sentence”. So, avoid embedded semicolons in class names or
data fields.

5) Blank lines are allowed.

6) Each line can be up to 500 characters in length.

7) The comment character is an exclamation or a backslash. Anything on a line after
an “!” or a “\” is ignored during EnergyPlus input.

MODULE DEVELOPER'S GUIDE INPUT CONCEPTS

4/26/02 4

The only significant syntax elements are the commas, the semi colon, the N’s (denoting
numeric data), and the A’s (denoting alphanumeric data) and the exclamation and
backslash. Everything else including blanks, end of lines, or even text that is not a
comma, semicolon, N, or A is ignored. There are several style conventions in use
however.

1) Sequence numbers are appended to the letters A or N denoting each data element.
Thus, A2 is the second alphanumeric data item and N3 is the third numeric data
item.

2) The class name contains a naming convention: type:subtype:subsubtype.

3) Backslashes denote specially formatted comments. These comments provide
information about the input, such as a description of the item, units, limits, mins &
maxes, etc., in a form that can be processed by an input editor or interface. A
complete description of the backslash comment format is given at the start of the IDD
file and in the Guide for Interface Developers.

Overall, the IDD file has very little structure. Generally, a new entry should be placed
next to entries describing similar components. COIL:Water:Simple Heating, for instance,
is grouped with entries describing other water coils.

Summary

The first task for a module developer is to create a new entry in the Input Data
Dictionary. This entry defines the data needed to model the new component.

Input Data File

The Input Data File (IDF) is the file containing the data for an actual simulation. This file
is also a text (ASCII) file with a syntax “filling in the blanks” of the definitions in the IDD.
A portion of an IDF with input data for the hot water coil defined in the IDD example
looks like:

!Demand Heating Components
 COIL:Water:SimpleHeating,
 Reheat Coil Zone 1, !Name of cooling coil
 FanAndCoilAvailSched, !Cooling Coil Schedule
 400.0, !UA of the Coil
 1.3, !Max Water Flow Rate of Coil kg/sec
 Zone 1 Reheat Water Inlet Node, !Water side inlet node
 Zone 1 Reheat Water Outlet Node, !Water side outlet node
 Zone 1 Reheat Air Inlet Node, !Air side inlet node
 Zone 1 Reheat Air Outlet Node; !Air side outlet node

 COIL:Water:SimpleHeating,
 Reheat Coil Zone 2, !Name of cooling coil
 FanAndCoilAvailSched, !Cooling Coil Schedule
 400.0, !UA of the Coil
 1.2, !Max Water Flow Rate of Coil kg/sec
 Zone 2 Reheat Water Inlet Node, !Water side inlet node
 Zone 2 Reheat Water Outlet Node, !Water side outlet node
 Zone 2 Reheat Air Inlet Node, !Air side inlet node
 Zone 2 Reheat Air Outlet Node; !Air side outlet node

 COIL:Water:SimpleHeating,
 Reheat Coil Zone 3, !Name of cooling coil
 FanAndCoilAvailSched, !Cooling Coil Schedule

MODULE DEVELOPER'S GUIDE INPUT CONCEPTS

4/26/02 5

 400.0, !UA of the Coil
 1.8, !Max Water Flow Rate of Coil kg/sec
 Zone 3 Reheat Water Inlet Node, !Water side inlet node
 Zone 3 Reheat Water Outlet Node, !Water side outlet node
 Zone 3 Reheat Air Inlet Node, !Air side inlet node
 Zone 3 Reheat Air Outlet Node; !Air side outlet node

Each coil entry begins with the class name (keyword) specifying the type of coil. Next is
the coil name – a user (or interface) created name that is unique within the given class.
Generally in EnergyPlus, objects within a class are distinguished by unique names. The
object name is usually the first data element following the class name. Any
alphanumeric data item in the IDF can be up to 40 characters long. Any characters past
40 are truncated (lost). After the object name comes the real data. If we look at the IDD
we see that the first data item after the object name is expected to be an alphanumeric –
a schedule name. In the IDF, we see the corresponding field is “FanAndCoilAvailSched”,
the object name of a schedule elsewhere in the IDF file. In EnergyPlus, all references to
other data entries (objects) are via object names. The next two data items are numeric:
the coil UA and the maximum water mass flow rate. The final four items are again
alphanumeric – the names of the coil inlet and outlet nodes. Nodes are used in
EnergyPlus to connect HVAC components together into HVAC systems.

The example illustrates the use of comments to create clear input. The IDF is intended
to be human readable, largely for development and debugging purposes. Of course,
most users will never see an IDF – they will interact with EnergyPlus through a Graphical
User Interface (GUI), which will write the IDF for them. However, a module developer is
a special kind of user. The module developer will need to create a portion of an IDF by
hand very early in the development process in order to begin testing the module under
development. Thus, it is important to understand the IDF syntax and to use comments
to create readable test IDF files.

Summary

One of the early tasks of a module developer is to create input (most likely by hand) for
the new component and to insert it into an existing IDF file in order to test the new
component model. The IDF syntax resembles the syntax for the IDD. The data follows
the IDD class description. Comments should be used to make the IDF readable.

Input Considerations

The IDD/IDF concept allows the module developer much flexibility. Along with this
flexibility comes a responsibility to the overall development of EnergyPlus. Developers
must take care not to obstruct other developers with their additions or changes. Major
changes in the IDD require collaboration among the developers (both module and
interface).

In many cases, the developer may be creating a new model – a new HVAC component,
for instance. Then the most straightforward approach is to create a new object class in
the IDD with its own unique, self-contained input. This will seldom impact other
developers.

In some cases, the developer may be adding a calculation within an existing module or
for an existing class of objects. This calculation may require new or different input fields.
Then the developer has a number of choices. This section will present some ideas for
adding to the IDD that will minimize impact to other developers.

MODULE DEVELOPER'S GUIDE INPUT CONCEPTS

4/26/02 6

For example, consider the implementation of Other Side Coefficients (OSC) in the IDD.
Other side coefficients are a simplification for the surface heat balance and were used
mostly in BLAST 2.0 before we had interzone surfaces. We have carried this forward
into EnergyPlus for those users that understand and can use it. We’ll use it as an
example of approaches to adding data items to the IDD. Moreover, we’ll try to give
some hints on which approaches might be used for future additions.

So, you're adding something to EnergyPlus and it is part of an existing module or object
class.. What do you do with your required inputs to your model? There are at least four
options:

1) Embed your values in a current object class definition.

2) Put something in the current definition that will trigger a "GetInput" for your
values.

3) Put something in the current definition that will signal a "special" case and embed
a name (of your item) in the definition (this adds 1 or 2 properties to the object).

4) Just get your input and have each of those inputs reference a named object.

For example, using the OSC option in surfaces, in beta 2 we had

 A8 , \field Exterior environment
 \type alpha
 \note <for Interzone Surface:Adjacent surface name>
 \note For non-interzone surfaces enter:
 \note ExteriorEnvironment, Ground, or OtherSideCoeff
 \note OSC won't use CTFs

 N24, \field User selected Constant Temperature
 N25, \field Coefficient modifying the user selected constant
 temperature
 N26, \field Coefficient modifying the external dry bulb temperature
 N27, \field Coefficient modifying the ground temperature
 N28, \field Combined convective/radiative film coefficient
 \note if=0, use other coefficients
 N29, \field Coefficient modifying the wind speed term (s/m)
 N30, \field Coefficient modifying the zone air temperature part of
 the equation

1) We have done option 1: embed the values in the input. (We have also
embedded these values in each and every surface derived type (internal data structure)
but that can be discussed elsewhere).

When to use: It makes sense to embed these values when each and every object
(SURFACE) needs these values (e.g. we need to specify Vertices for Every Surface --
so these clearly should be embedded).

After beta 2, the definition of Surfaces was changed Obviously option 1 was not a good
choice for the OCF data: the data would be rarely used. Our other options were:

2) Obviously the ExteriorEnvironment field will remain (but its name was to Outside
Face Environment).

However, we do not want to embed the values for OtherSideCoef in the Surface items.
So, if the ExteriorEnvironment continues to reference OtherSideCoef, we can easily
trigger a "GetInput" for them. An additional object class would be necessary for this
case.

MODULE DEVELOPER'S GUIDE INPUT CONCEPTS

4/26/02 7

OtherSideCoef, A1, \field name of OtherSideCoef,
 A2, \field SurfaceName (reference to surface using OSC)

When to use: This option can be used for many cases. The same object definition will
work for option 4 below. Obviously, if there is not a convenient trigger in SURFACE but
you want to add a feature, this would let you do it without embedding it in the Surface
Definition. If there is a trigger, such as exists with the ExteriorEnvironment, the A2 field
might not be needed. This approach would become a bit cumbersome if you expected
there to be a lot of these or if there were a one to many relationship (i.e. a single set of
OSCs could be used for many surfaces). Nevertheless, the approach provides a
convenient "data check"/cross reference that can be validated inside the code.

3) We could also have the SURFACE definition reference an OSC name (in this
instance).

So, we'd add a field to the Surface that would be the name in the OtherSideCoef object
above. Then, the OtherSideCoef objects wouldn’t need a Surface Name. This is the
most straightforward approach: including data in one object by referencing another, and
it was the approach chosen for the redefined Surface class.

When to use: when there is a set of parameters that would be used extensively, then
this would provide a name for those. If hand editing, then you only would need to
change one set of these parameters rather than having to go through many. Of course,
the OtherSideCoef object wouldn’t also have to have the true numbers but could
reference yet a third named object...... (starting to get messy).

4) We could have the OtherSideCoef object as above and just "get" it as a matter of
course. (In the case where we don’t have a convenient trigger such as
ExteriorEnvironment).

When to use: Note that the same structure for 2 works here too. It's just not triggered
(to get the input) by a value in the other object (SURFACE).

Summary

There are several approaches to adding items to the IDD. Developers need to consider
impacts to other developers and users early in the implementation planning.

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 8

Module Structure

Let us assume that the novice EnergyPlus developer wishes to model a new HVAC
component called NewHVACComponent. Right at the start there is a choice to make:
whether to insert the new model into an existing module or to create an entirely new
EnergyPlus component simulation model. Creating a new module is the easier option to
explain, implement and test. We will discuss this option in this document. The
discussion should also impart enough information to allow a new developer to insert a
model into an existing EnergyPlus module if that option is chosen.

Module Outline

The developer will create a new file NewHVACComponent.f90. The file will contain the
following elements:

MODULE NewHVACComponent

Documentation: Fortran comments describing and documenting the module.
Included are sections showing module author, module creation date, date
modified and modification author;

USE Statements: Fortran statements naming other modules that this module can
access, either for data or for routines.

Module Datastructure Definitions: Using the Fortran TYPE statement define the
data structures needed in the module that will not be available from other
modules. Define all module level variables that will be needed.

CONTAINS

SUBROUTINE SimNewHVACComponent

This routine selects the individual component being simulated and calls
the other module subroutines that do the real work. This routine is the
only routine in the module that is accessible outside the module
(PUBLIC). All other routines in the module are PRIVATE and are only
callable within the module. This routine is sometimes called the “driver”
routine for the module.

END SUBROUTINE SimNewHVACComponent

SUBROUTINE GetNewHVACComponentInput

This routine uses the “get” routines from the InputProcessor module to
obtain input for NewHVACComponent. The module data arrays are
allocated and the data is moved into the arrays.

END SUBROUTINE GetNewHVACComponentInput

SUBROUTINE InitNewHVACComponent

This routine performs whatever initialization calculations that may be
needed at various points in the simulation. For instance, some
calculations may only need to be done once; some may need to be done
at the start of each simulation weather period; some at the start of each
HVAC simulation time step; and some at the start of each loop solution.
This routine also transfers data from the component inlet nodes to the
component data arrays every time the component is simulated, in
preparation for the actual component simulation.

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 9

END SUBROUTINE InitNewHVACComponent

SUBROUTINE CalcNewHVACComponent

This routine does the actual calculations to simulate the performance of
the component. Only calculation is done – there is no moving of data
from or to input or output areas. There may be more than one “CALC”
subroutine if more than one component is being modeled within this
module.

END SUBROUTINE CalcNewHVACComponent

SUBROUTINE UpdateNewHVACComponent

This routine moves the results of the “Calc” routine(s) to the component
outlet nodes.

END SUBROUTINE UpdateNewHVACComponent

SUBROUTINE ReportNewHVACComponent

This routine performs any special calculations that are needed purely for
reporting purposes.

END SUBROUTINE ReportNewHVACComponent

END MODULE NewHVACComponent

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 10

Module Example

Module Fans
 ! Module containing the fan simulation routines

 ! MODULE INFORMATION:
 ! AUTHOR Richard J. Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS MODULE:
 ! To encapsulate the data and algorithms required to
 ! manage the Fan System Component

 ! REFERENCES: none

 ! OTHER NOTES: none

 ! USE STATEMENTS:
 ! Use statements for data only modules
USE DataLoopNode
USE DataGlobals, ONLY: SetupOutputVariable, BeginSimFlag, BeginEnvrnFlag, BeginDayFlag, &
 MaxNameLength, &
 ShowWarningError, ShowFatalError, ShowSevereError
Use DataEnvironment, ONLY: OutBaroPress

 ! Use statements for access to subroutines in other modules
USE ScheduleManager

IMPLICIT NONE ! Enforce explicit typing of all variables

PRIVATE ! Everything private unless explicitly made public

 !MODULE PARAMETER DEFINITIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
TYPE FanEquipConditions
 CHARACTER(len=MaxNameLength) :: FanName ! Name of the fan
 CHARACTER(len=MaxNameLength) :: FanType ! Type of Fan ie. Simple, Vane axial, Centrifugal, etc.
 CHARACTER(len=MaxNameLength) :: Schedule ! Fan Operation Schedule
 CHARACTER(len=MaxNameLength) :: Control ! ie. Const Vol, Variable Vol
 Integer :: SchedPtr ! Pointer to the correct schedule
 REAL :: InletAirMassFlowRate !MassFlow through the Fan being Simulated [kg/Sec]
 REAL :: OutletAirMassFlowRate
 Real :: MaxAirFlowRate !Max Specified Volume Flow Rate of Fan [m^3/sec]
 Real :: MinAirFlowRate !Min Specified Volume Flow Rate of Fan [m^3/sec]
 REAL :: MaxAirMassFlowRate ! Max flow rate of fan in kg/sec
 REAL :: MinAirMassFlowRate ! Min flow rate of fan in kg/sec
 REAL :: InletAirTemp
 REAL :: OutletAirTemp
 REAL :: InletAirHumRat
 REAL :: OutletAirHumRat
 REAL :: InletAirEnthalpy
 REAL :: OutletAirEnthalpy
 REAL :: FanPower !Power of the Fan being Simulated [kW]
 REAL :: FanEnergy !Fan energy in [kJ]
 REAL :: DeltaTemp !Temp Rise across the Fan [C]
 REAl :: DeltaPress !Delta Pressure Across the Fan [N/M^2]
 REAL :: FanEff !Fan total efficiency; motor and mechanical
 REAL :: MotEff !Fan motor efficiency
 REAL :: MotInAirFrac !Fraction of motor heat entering air stream
 REAL, Dimension(5):: FanCoeff !Fan Part Load Coefficients to match fan type
 ! Mass Flow Rate Control Variables
 REAL :: MassFlowRateMaxAvail
 REAL :: MassFlowRateMinAvail
 INTEGER :: InletNodeNum
 INTEGER :: OutletNodeNum
END TYPE FanEquipConditions

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 11

 !MODULE VARIABLE DECLARATIONS:
 INTEGER :: NumFans ! The Number of Fans found in the Input
 TYPE (FanEquipConditions), ALLOCATABLE, DIMENSION(:) :: Fan

! Subroutine Specifications for the Module
 ! Driver/Manager Routines
Public SimulateFanComponents

 ! Get Input routines for module
PRIVATE GetFanInput

 ! Initialization routines for module
PRIVATE InitFan

 ! Algorithms for the module
Private SimSimpleFan
PRIVATE SimVariableVolumeFan
PRIVATE SimZoneExhaustFan

 ! Update routine to check convergence and update nodes
Private UpdateFan

 ! Reporting routines for module
Private ReportFan

CONTAINS

! MODULE SUBROUTINES:
!***
SUBROUTINE SimulateFanComponents(CompName,FirstHVACIteration)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN February 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine manages Fan component simulation.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor, ONLY: FindItemInList

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 LOGICAL, INTENT (IN):: FirstHVACIteration
 CHARACTER(len=*), INTENT(IN) :: CompName

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 INTEGER :: FanNum ! current fan number
 Logical :: GetInputFlag = .True. ! Flag set to make sure you get input once

 ! FLOW:

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 12

 ! Obtains and Allocates fan related parameters from input file
 IF (GetInputFlag) THEN !First time subroutine has been entered
 CALL GetFanInput
 GetInputFlag=.false.
 End If

 ! Find the correct FanNumber with the AirLoop & CompNum from AirLoop Derived Type
 !FanNum = AirLoopEquip(AirLoopNum)%ComponentOfTypeNum(CompNum)
 ! Find the correct WaterCoilNumber with the Coil Name
 FanNum = FindItemInList(CompName,Fan%FanName,NumFans)
 IF (FanNum == 0) THEN
 CALL ShowFatalError('Fan not found='//TRIM(CompName))
 ENDIF

 ! With the correct FanNum Initialize
 CALL InitFan(FanNum,FirstHVACIteration) ! Initialize all fan related parameters

 ! Calculate the Correct Fan Model with the current FanNum
 If(Fan(FanNum)%FanType == 'SIMPLE' .and. &
 Fan(FanNum)%Control == 'CONSTVOLUME') Then
 Call SimSimpleFan(FanNum)
 Else IF(Fan(FanNum)%FanType == 'SIMPLE' .and. &
 Fan(FanNum)%Control == 'VARIABLEVOLUME' .OR. &
 Fan(FanNum)%Control == 'ONOFF') Then
 Call SimVariableVolumeFan(FanNum)
 Else If(Fan(FanNum)%FanType == 'ZONE EXHAUST FAN') Then
 Call SimZoneExhaustFan(FanNum)
 End If

 ! Update the current fan to the outlet nodes
 Call UpdateFan(FanNum)

 ! Report the current fan
 Call ReportFan(FanNum)

 RETURN

END SUBROUTINE SimulateFanComponents

! Get Input Section of the Module
!**
SUBROUTINE GetFanInput

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! Obtains input data for fans and stores it in fan data structures

 ! METHODOLOGY EMPLOYED:
 ! Uses "Get" routines to read in data.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 USE InputProcessor
 USE NodeInputManager

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 ! na

 ! SUBROUTINE PARAMETER DEFINITIONS:

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 13

 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
! INTEGER :: NumAirLoops ! Read Input for the Total Number of Air Loops
! INTEGER :: AirLoopNum ! primary air loop index
! INTEGER :: CompNum
 INTEGER :: FanNum ! The fan that you are currently loading input into
 INTEGER :: NumSimpFan ! The number of Simple Const Vol Fans
 INTEGER :: NumVarVolFan ! The number of Simple Variable Vol Fans
 INTEGER :: NumOnOff ! The number of Simple on-off Fans
 INTEGER :: NumZoneExhFan
 INTEGER :: SimpFanNum
 INTEGER :: OnOffFanNum
 INTEGER :: VarVolFanNum
 INTEGER :: ExhFanNum
 INTEGER :: NumAlphas
 INTEGER :: NumNums
 INTEGER :: IOSTAT
 REAL, DIMENSION(11) :: NumArray
 CHARACTER(len=MaxNameLength), DIMENSION(4) :: AlphArray
 INTEGER :: NumNodes
 INTEGER, DIMENSION(25) :: NodeNums
 LOGICAL :: ErrorsFound = .false. ! If errors detected in input
 LOGICAL :: IsNotOK ! Flag to verify name
 LOGICAL :: IsBlank ! Flag for blank name

 ! Flow
 NumSimpFan = GetNumObjectsFound('FAN:SIMPLE:CONSTVOLUME')
 NumVarVolFan = GetNumObjectsFound('FAN:SIMPLE:VARIABLEVOLUME')
 NumOnOff = GetNumObjectsFound('FAN:SIMPLE:ONOFF')
 NumZoneExhFan = GetNumObjectsFound('ZONE EXHAUST FAN')
 NumFans = NumSimpFan + NumVarVolFan + NumZoneExhFan+NumOnOff
 IF (NumFans.GT.0) ALLOCATE(Fan(NumFans))
 ! Initialize fan data structures
 Fan%FanName = ' '
 Fan%FanType = ' '
 Fan%Schedule = ' '
 Fan%Control = ' '
 Fan%SchedPtr = 0
 Fan%InletAirMassFlowRate = 0.0
 Fan%OutletAirMassFlowRate = 0.0
 Fan%MaxAirFlowRate = 0.0
 Fan%MinAirFlowRate = 0.0
 Fan%MaxAirMassFlowRate = 0.0
 Fan%MinAirMassFlowRate = 0.0
 Fan%InletAirTemp = 0.0
 Fan%OutletAirTemp = 0.0
 Fan%InletAirHumRat = 0.0
 Fan%OutletAirHumRat = 0.0
 Fan%InletAirEnthalpy = 0.0
 Fan%OutletAirEnthalpy = 0.0
 Fan%FanPower = 0.0
 Fan%FanEnergy = 0.0
 Fan%DeltaTemp = 0.0
 Fan%DeltaPress = 0.0
 Fan%FanEff = 0.0
 Fan%MotEff = 0.0
 Fan%MotInAirFrac = 0.0
 Fan%FanCoeff(1) = 0.0
 Fan%FanCoeff(2) = 0.0
 Fan%FanCoeff(3) = 0.0
 Fan%FanCoeff(4) = 0.0
 Fan%FanCoeff(5) = 0.0
 Fan%MassFlowRateMaxAvail = 0.0
 Fan%MassFlowRateMinAvail = 0.0

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 14

 Fan%InletNodeNum = 0
 Fan%OutletNodeNum = 0

 DO SimpFanNum = 1, NumSimpFan
 FanNum = SimpFanNum
 CALL GetObjectItem('FAN:SIMPLE:CONSTVOLUME',SimpFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(AlphArray(1),Fan%FanName,FanNum-1,IsNotOK,IsBlank, &
 'FAN:SIMPLE:CONSTVOLUME Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) AlphArray(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = AlphArray(1)
 Fan(FanNum)%FanType = 'SIMPLE'
 Fan(FanNum)%Schedule = AlphArray(2)
 Fan(FanNum)%SchedPtr =GetScheduleIndex(AlphArray(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 CALL ShowSevereError('FAN:SIMPLE:CONSTVOLUME, Schedule not found='//TRIM(AlphArray(2)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%Control = 'CONSTVOLUME'

 Fan(FanNum)%FanEff = NumArray(1)
 Fan(FanNum)%DeltaPress = NumArray(2)
 Fan(FanNum)%MaxAirFlowRate= NumArray(3)
 Fan(FanNum)%MotEff = NumArray(4)
 Fan(FanNum)%MotInAirFrac = NumArray(5)
 Fan(FanNum)%MinAirFlowRate= 0.0

 CALL GetNodeNums(AlphArray(3),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:ConstVolume:Only 1st Node used from:' &
 //TRIM(AlphArray(3)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%InletNodeNum = NodeNums(1)
 CALL GetNodeNums(AlphArray(4),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:ConstVolume:Only 1st Node used from:' &
 //TRIM(AlphArray(4)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%OutletNodeNum = NodeNums(1)

 END DO ! end Number of Simple FAN Loop

 DO VarVolFanNum = 1, NumVarVolFan
 FanNum = NumSimpFan + VarVolFanNum
 CALL GetObjectItem('FAN:SIMPLE:VARIABLEVOLUME',VarVolFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(AlphArray(1),Fan%FanName,FanNum-1,IsNotOK,IsBlank, &
 'FAN:SIMPLE:VARIABLEVOLUME Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) AlphArray(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = AlphArray(1)
 Fan(FanNum)%FanType = 'SIMPLE'
 Fan(FanNum)%Schedule = AlphArray(2)
 Fan(FanNum)%SchedPtr =GetScheduleIndex(AlphArray(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 CALL ShowSevereError('FAN:SIMPLE:VARIABLEVOLUME, Schedule not found=' &
 //TRIM(AlphArray(2)))
 ErrorsFound=.true.
 ENDIF

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 15

 Fan(FanNum)%Control = 'VARIABLEVOLUME'

 Fan(FanNum)%FanEff = NumArray(1)
 Fan(FanNum)%DeltaPress = NumArray(2)
 Fan(FanNum)%MaxAirFlowRate= NumArray(3)
 Fan(FanNum)%MinAirFlowRate= NumArray(4)
 Fan(FanNum)%MotEff = NumArray(5)
 Fan(FanNum)%MotInAirFrac = NumArray(6)
 Fan(FanNum)%FanCoeff(1) = NumArray(7)
 Fan(FanNum)%FanCoeff(2) = NumArray(8)
 Fan(FanNum)%FanCoeff(3) = NumArray(9)
 Fan(FanNum)%FanCoeff(4) = NumArray(10)
 Fan(FanNum)%FanCoeff(5) = NumArray(11)
 CALL GetNodeNums(AlphArray(3),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:VariableVolume:Only 1st Node used from:' &
 //TRIM(AlphArray(3)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%InletNodeNum = NodeNums(1)
 CALL GetNodeNums(AlphArray(4),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:VariableVolume:Only 1st Node used from:' &
 //TRIM(AlphArray(4)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%OutletNodeNum = NodeNums(1)

 END DO ! end Number of Variable Volume FAN Loop

 DO ExhFanNum = 1, NumZoneExhFan
 FanNum = NumSimpFan + NumVarVolFan + ExhFanNum
 CALL GetObjectItem('ZONE EXHAUST FAN',ExhFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(AlphArray(1),Fan%FanName,FanNum-1,IsNotOK,IsBlank,'ZONE EXHAUST FAN Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) AlphArray(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = AlphArray(1)
 Fan(FanNum)%FanType = 'ZONE EXHAUST FAN'
 Fan(FanNum)%Schedule = AlphArray(2)
 Fan(FanNum)%SchedPtr =GetScheduleIndex(AlphArray(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 CALL ShowSevereError('ZONE EXHAUST FAN, Schedule not found='//TRIM(AlphArray(2)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%Control = 'CONSTVOLUME'

 Fan(FanNum)%FanEff = NumArray(1)
 Fan(FanNum)%DeltaPress = NumArray(2)
 Fan(FanNum)%MaxAirFlowRate= NumArray(3)
 Fan(FanNum)%MotEff = 1.0
 Fan(FanNum)%MotInAirFrac = 1.0
 Fan(FanNum)%MinAirFlowRate= 0.0

 CALL GetNodeNums(AlphArray(3),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:ConstVolume:Only 1st Node used from:' &
 //TRIM(AlphArray(3)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%InletNodeNum = NodeNums(1)
 CALL GetNodeNums(AlphArray(4),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:ConstVolume:Only 1st Node used from:' &
 //TRIM(AlphArray(4)))
 ErrorsFound=.true.
 ENDIF

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 16

 Fan(FanNum)%OutletNodeNum = NodeNums(1)

 END DO ! end of Zone Exhaust Fan loop

 DO OnOffFanNum = 1, NumOnOff
 FanNum = NumSimpFan + NumVarVolFan + NumZoneExhFan + OnOffFanNum
 CALL GetObjectItem('FAN:SIMPLE:ONOFF',OnOffFanNum,AlphArray, &
 NumAlphas,NumArray,NumNums,IOSTAT)
 IsNotOK=.false.
 IsBlank=.false.
 CALL VerifyName(AlphArray(1),Fan%FanName,FanNum-1,IsNotOK,IsBlank,'FAN:SIMPLE:ONOFF Name')
 IF (IsNotOK) THEN
 ErrorsFound=.true.
 IF (IsBlank) AlphArray(1)='xxxxx'
 ENDIF
 Fan(FanNum)%FanName = AlphArray(1)
 Fan(FanNum)%FanType = 'SIMPLE'
 Fan(FanNum)%Schedule = AlphArray(2)
 Fan(FanNum)%SchedPtr =GetScheduleIndex(AlphArray(2))
 IF (Fan(FanNum)%SchedPtr == 0) THEN
 CALL ShowSevereError('FAN:SIMPLE:ONOFF, Schedule not found='//TRIM(AlphArray(2)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%Control = 'ONOFF'

 Fan(FanNum)%FanEff = NumArray(1)
 Fan(FanNum)%DeltaPress = NumArray(2)
 Fan(FanNum)%MaxAirFlowRate= NumArray(3)
 Fan(FanNum)%MotEff = NumArray(4)
 Fan(FanNum)%MotInAirFrac = NumArray(5)
 Fan(FanNum)%MinAirFlowRate= 0.0
 Fan%FanCoeff(1) = 0.0
 Fan%FanCoeff(2) = 1.0
 Fan%FanCoeff(3) = 0.0
 Fan%FanCoeff(4) = 0.0
 Fan%FanCoeff(5) = 0.0

 CALL GetNodeNums(AlphArray(3),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:OnOff:Only 1st Node used from:'//TRIM(AlphArray(3)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%InletNodeNum = NodeNums(1)
 CALL GetNodeNums(AlphArray(4),NumNodes,NodeNums)
 IF (NumNodes > 1) THEN
 CALL ShowSevereError('Fan:Simple:OnOff:Only 1st Node used from:'//TRIM(AlphArray(4)))
 ErrorsFound=.true.
 ENDIF
 Fan(FanNum)%OutletNodeNum = NodeNums(1)

 END DO ! end Number of Simple ON-OFF FAN Loop

 IF (ErrorsFound) THEN
 CALL ShowFatalError('Errors found in getting Fan input')
 ENDIF

 Do FanNum=1,NumFans
 ! Setup Report variables for the Fans
 CALL SetupOutputVariable('Fan Electric Power[W]', Fan(FanNum)%FanPower, &
 'System','Average',Fan(FanNum)%FanName)
 CALL SetupOutputVariable('Fan Delta Temp[C]', Fan(FanNum)%DeltaTemp, &
 'System','Average',Fan(FanNum)%FanName)
 CALL SetupOutputVariable('Fan Electric Consumption[J]', Fan(FanNum)%FanEnergy, &
 'System','Sum',Fan(FanNum)%FanName, &
 ResourceTypeKey='Electric',EndUseKey='Fans',GroupKey='System')

 END DO

 RETURN

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 17

END SUBROUTINE GetFanInput

! End of Get Input subroutines for the HB Module
!**

! Beginning Initialization Section of the Module
!**

SUBROUTINE InitFan(FanNum,FirstHVACIteration)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard J. Liesen
 ! DATE WRITTEN February 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine is for initializations of the Fan Components.

 ! METHODOLOGY EMPLOYED:
 ! Uses the status flags to trigger initializations.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 LOGICAL, INTENT (IN):: FirstHVACIteration
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Integer :: InletNode
 Integer :: OutletNode
 Integer :: FanIndex
 Integer :: InNode
 Integer :: OutNode
 Real :: RhoAir
 LOGICAL :: MyEnvrnFlag=.true.
 Real RhoAirFN

 ! FLOW:

! Do the Begin Simulation initializations
 ! none

! Do the Begin Environment initializations
 IF (BeginEnvrnFlag .and. MyEnvrnFlag) THEN

 Do FanIndex = 1, NumFans
 !For all Fan inlet nodes convert the Volume flow to a mass flow
 InNode = Fan(FanIndex)%InletNodeNum
 OutNode = Fan(FanIndex)%OutletNodeNum
 RhoAir = RhoAirFn(OutBaroPress,25.,0.014)

 !Change the Volume Flow Rates to Mass Flow Rates

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 18

 Fan(FanIndex)%MaxAirMassFlowRate = Fan(FanIndex)%MaxAirFlowRate * RhoAir
 Fan(FanIndex)%MinAirMassFlowRate = Fan(FanIndex)%MinAirFlowRate * RhoAir

 !Init the Node Control variables
 Node(OutNode)%MassFlowRateMax = Fan(Fanindex)%MaxAirMassFlowRate
 Node(OutNode)%MassFlowRateMin = Fan(Fanindex)%MinAirMassFlowRate

 !Initialize all report variables to a known state at beginning of simulation
 Fan(Fanindex)%FanPower = 0.0
 Fan(Fanindex)%DeltaTemp = 0.0
 Fan(Fanindex)%FanEnergy = 0.0

 End Do
 MyEnvrnFlag = .FALSE.
 END IF

 IF (.not. BeginEnvrnFlag) THEN
 MyEnvrnFlag=.true.
 ENDIF

 ! Do the Begin Day initializations
 ! none

 ! Do the begin HVAC time step initializations
 ! none

 ! Do the following initializations (every time step): This should be the info from
 ! the previous components outlets or the node data in this section.

 ! Do a check and make sure that the max and min available(control) flow is
 ! between the physical max and min for the Fan while operating.

 InletNode = Fan(FanNum)%InletNodeNum
 OutletNode = Fan(FanNum)%OutletNodeNum

 Fan(FanNum)%MassFlowRateMaxAvail = MIN(Node(OutletNode)%MassFlowRateMax, &
 Node(InletNode)%MassFlowRateMaxAvail)
 Fan(FanNum)%MassFlowRateMinAvail = MIN(MAX(Node(OutletNode)%MassFlowRateMin, &
 Node(InletNode)%MassFlowRateMinAvail), &
 Node(InletNode)%MassFlowRateMaxAvail)

 ! Load the node data in this section for the component simulation
 !
 !First need to make sure that the massflowrate is between the max and min avail.
 IF (Fan(FanNum)%FanType .NE. 'ZONE EXHAUST FAN') THEN
 Fan(FanNum)%InletAirMassFlowRate = Min(Node(InletNode)%MassFlowRate, &
 Fan(FanNum)%MassFlowRateMaxAvail)
 Fan(FanNum)%InletAirMassFlowRate = Max(Fan(FanNum)%InletAirMassFlowRate, &
 Fan(FanNum)%MassFlowRateMinAvail)
 ELSE ! zone exhaust fans - always run at the max
 Fan(FanNum)%MassFlowRateMaxAvail = Fan(FanNum)%MaxAirMassFlowRate
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 Fan(FanNum)%InletAirMassFlowRate = Fan(FanNum)%MassFlowRateMaxAvail
 END IF

 !Then set the other conditions
 Fan(FanNum)%InletAirTemp = Node(InletNode)%Temp
 Fan(FanNum)%InletAirHumRat = Node(InletNode)%HumRat
 Fan(FanNum)%InletAirEnthalpy = Node(InletNode)%Enthalpy

 RETURN

END SUBROUTINE InitFan

! End Initialization Section of the Module
!**

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 19

! Begin Algorithm Section of the Module
!**
SUBROUTINE SimSimpleFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Unknown
 ! DATE WRITTEN Unknown
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the simple constant volume fan.

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real RhoAir
 Real DeltaPress ! [N/M^2]
 Real FanEff
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real FanShaftPower ! power delivered to fan shaft
 Real PowerLossToAir ! fan and motor loss to air stream (watts)
 Real, External :: Psythw ! calculate temperature from enthalpy and humidity ratio
 Real, External :: rhoairfn

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 ! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan
 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = RhoAirFn(OutBaroPress,Tin,Win)
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)
 !
 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr) .gt. 0.0) .and. &
 (Massflow .gt. 0.0)) Then
 !Fan is operating
 Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) * &
 Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 20

 Fan(FanNum)%OutletAirTemp = Psythw(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0

 End If

 RETURN
END SUBROUTINE SimSimpleFan

SUBROUTINE SimVariableVolumeFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Unknown
 ! DATE WRITTEN Unknown
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the simple variable volume fan.

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.
 ! Uses curves of fan power fraction vs. fan part load to determine fan power at
 ! off design conditions.

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real, External :: Psythw ! calculate temperature from enthalpy and humidity ratio
 Real, External :: rhoairfn
 Real RhoAir
 Real DeltaPress ! [N/M^2]
 Real FanEff
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real PartLoadFrac
 REAL MaxFlowFrac !Variable Volume Fan Max Flow Fraction [kg/sec]
 REAL MinFlowFrac !Variable Volume Fan Min Flow Fraction [kg/sec]
 REAL FlowFrac !Variable Volume Fan Flow Fraction [kg/sec]

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 21

 Real FanShaftPower ! power delivered to fan shaft
 Real PowerLossToAir ! fan and motor loss to air stream (watts)

! Simple Variable Volume Fan
! Type of Fan Coeff1 Coeff2 Coeff3 Coeff4 Coeff5
! INLET VANE DAMPERS 0.35071223 0.30850535 -0.54137364 0.87198823 0.000
! DISCHARGE DAMPERS 0.37073425 0.97250253 -0.34240761 0.000 0.000
! VARIABLE SPEED MOTOR 0.0015302446 0.0052080574 1.1086242 -0.11635563 0.000

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = RhoAirFn(OutBaroPress,Tin,Win)
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)

 ! Calculate and check limits on fraction of system flow
 MaxFlowFrac = 1.0
 ! MinFlowFrac is calculated from the ration of the volume flows and is non-dimensional
 MinFlowFrac = Fan(FanNum)%MinAirFlowRate/Fan(FanNum)%MaxAirFlowRate
 ! The actual flow fraction is calculated from MassFlow and the MaxVolumeFlow * AirDensity
 FlowFrac = MassFlow/(Fan(FanNum)%MaxAirMassFlowRate)
 !

! Calculate the part Load Fraction
 If(FlowFrac .gt. MaxFlowFrac) Then
 PartLoadFrac = 1.0
 Else If(FlowFrac .lt. MinFlowFrac) Then
 PartLoadFrac = MinFlowFrac
 Else
 PartLoadFrac=Fan(FanNum)%FanCoeff(1) + Fan(FanNum)%FanCoeff(2)*FlowFrac + &
 Fan(FanNum)%FanCoeff(3)*FlowFrac**2 + Fan(FanNum)%FanCoeff(4)*FlowFrac**3 + &
 Fan(FanNum)%FanCoeff(5)*FlowFrac**4
 End If

 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr) .gt. 0.0) .and. &
 (Massflow .gt. 0.0)) Then
 !Fan is operating
 Fan(FanNum)%FanPower = PartLoadFrac*MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) * &
 Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
 Fan(FanNum)%OutletAirTemp = Psythw(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)
 ! Set fan control information
 !Fan(FanNum)%MassFlowRateMaxAvail = MassFlow
 !Fan(FanNum)%MassFlowRateMinAvail = MassFlow
 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 End If

 RETURN
END SUBROUTINE SimVariableVolumeFan

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 22

SUBROUTINE SimZoneExhaustFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Fred Buhl
 ! DATE WRITTEN Jan 2000
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine simulates the Zone Exhaust Fan

 ! METHODOLOGY EMPLOYED:
 ! Converts design pressure rise and efficiency into fan power and temperature rise
 ! Constant fan pressure rise is assumed.

 ! REFERENCES:
 ! ASHRAE HVAC 2 Toolkit, page 2-3 (FANSIM)

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Real RhoAir
 Real DeltaPress ! [N/M^2]
 Real FanEff
 Real MassFlow ! [kg/sec]
 Real Tin ! [C]
 Real Win
 Real PowerLossToAir ! fan and motor loss to air stream (watts)
 Real, External :: Psythw ! calculate temperature from enthalpy and humidity ratio
 Real, External :: rhoairfn

 DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 ! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan
 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = RhoAirFn(OutBaroPress,Tin,Win)
 MassFlow = Fan(FanNum)%InletAirMassFlowRate
 !
 !Determine the Fan Schedule for the Time step
 If(GetCurrentScheduleValue(Fan(FanNum)%SchedPtr) .gt. 0.0) THEN
 !Fan is operating
 Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 PowerLossToAir = Fan(FanNum)%FanPower
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
 Fan(FanNum)%OutletAirTemp = Psythw(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 PowerLossToAir = 0.0

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 23

 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 Fan(FanNum)%InletAirMassFlowRate = 0.0

 End If

 RETURN
END SUBROUTINE SimZoneExhaustFan

! End Algorithm Section of the Module
! ***

! Beginning of Update subroutines for the Fan Module
! ***

SUBROUTINE UpdateFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine updates the fan outlet nodes.

 ! METHODOLOGY EMPLOYED:
 ! Data is moved from the fan data structure to the fan outlet nodes.

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 ! na

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 Integer :: OutletNode
 Integer :: InletNode

 OutletNode = Fan(FanNum)%OutletNodeNum
 InletNode = Fan(FanNum)%InletNodeNum

 ! Set the outlet air nodes of the fan
 Node(OutletNode)%MassFlowRate = Fan(FanNum)%OutletAirMassFlowRate
 Node(OutletNode)%Temp = Fan(FanNum)%OutletAirTemp
 Node(OutletNode)%HumRat = Fan(FanNum)%OutletAirHumRat
 Node(OutletNode)%Enthalpy = Fan(FanNum)%OutletAirEnthalpy
 ! Set the outlet nodes for properties that just pass through & not used
 Node(OutletNode)%Quality = Node(InletNode)%Quality
 Node(OutletNode)%Press = Node(InletNode)%Press

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 24

 ! Set the Node Flow Control Variables from the Fan Control Variables
 Node(OutletNode)%MassFlowRateMaxAvail = Fan(FanNum)%MassFlowRateMaxAvail
 Node(OutletNode)%MassFlowRateMinAvail = Fan(FanNum)%MassFlowRateMinAvail

 IF (Fan(FanNum)%FanType .EQ. 'ZONE EXHAUST FAN') THEN
 Node(InletNode)%MassFlowRate = Fan(FanNum)%InletAirMassFlowRate
 END IF

 RETURN
END Subroutine UpdateFan

! End of Update subroutines for the Fan Module
! ***

! Beginning of Reporting subroutines for the Fan Module
! ***

SUBROUTINE ReportFan(FanNum)

 ! SUBROUTINE INFORMATION:
 ! AUTHOR Richard Liesen
 ! DATE WRITTEN April 1998
 ! MODIFIED na
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS SUBROUTINE:
 ! This subroutine updates the report variables for the fans.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! USE STATEMENTS:
 Use DataHVACGlobals, ONLY: TimeStepSys, FanElecPower

 IMPLICIT NONE ! Enforce explicit typing of all variables in this routine

 ! SUBROUTINE ARGUMENT DEFINITIONS:
 Integer, Intent(IN) :: FanNum

 ! SUBROUTINE PARAMETER DEFINITIONS:
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! SUBROUTINE LOCAL VARIABLE DECLARATIONS:
 ! na

 Fan(FanNum)%FanEnergy=Fan(FanNum)%FanPower*TimeStepSys*3600
 Fan(FanNum)%DeltaTemp=Fan(FanNum)%OutletAirTemp - Fan(FanNum)%InletAirTemp
 FanElecPower = Fan(FanNum)%FanPower

 RETURN
END Subroutine ReportFan

! End of Reporting subroutines for the Fan Module
! ***

! COPYRIGHT NOTICE
!
! Copyright © 1996-2001 The Board of Trustees of the University of Illinois
! and The Regents of the University of California, pending approval by the
! US Department of Energy. All rights reserved.
!

MODULE DEVELOPER'S GUIDE MODULE STRUCTURE

4/26/02 25

! NOTICE: The U.S. Government is granted for itself and others acting on its
! behalf a paid-up, nonexclusive, irrevocable, worldwide license in this data to
! reproduce, prepare derivative works, and perform publicly and display publicly.
! Beginning five (5) years after permission to assert copyright is granted,
! subject to two possible five year renewals, the U.S. Government is granted for
! itself and others acting on its behalf a paid-up, non-exclusive, irrevocable
! worldwide license in this data to reproduce, prepare derivative works,
! distribute copies to the public, perform publicly and display publicly, and to
! permit others to do so.
!
! TRADEMARKS: DOE-2.1e, DOE-2, and DOE are trademarks of the US Department of
! Energy.
!
! DISCLAIMER OF LIABILITY: With respect to this software, neither UI, LBNL, the
! Department of Energy, the US Government and/or any person or organization acting
! on behalf of any of them:
!
! a. Make any warranty or representation whatsoever, express or implied, with
! respect to EnergyPlus or any derivative works thereof, including without
! limitation warranties of merchantability, warranties of fitness for a particular
! purpose, or warranties or representations regarding the use, or the results of
! the use of EnergyPlus or derivative works thereof in terms of correctness,
! accuracy, reliability, currentness, or otherwise. The entire risk as to the
! results and performance of the licensed software is assumed by the licensee.
!
! b. Make any representation or warranty that EnergyPlus or derivative works
! thereof will not infringe any copyright or other proprietary right.
!
! c. Assume any liability whatsoever with respect to any use of EnergyPlus,
! derivative works thereof, or any portion thereof or with respect to any damages
! which may result from such use.
!
! DISCLAIMER OF ENDORSEMENT: Reference herein to any specific commercial products,
! process, or service by trade name, trademark, manufacturer, or otherwise, does
! not necessarily constitute or imply its endorsement, recommendation, or favoring
! by the United States Government, the University of California, the University of
! Illinois or the Ernest Orlando Lawrence Berkeley National Laboratory.
!
!

End Module Fans

This example can be used as a template for new HVAC component modules. In
particular, the commenting structure in the module and within the subroutines should be
followed closely. Of course, there is no perfect example module – this one is particularly
simple. Some others that might be examined are in files Humidifiers.f90,
HVACHeatingCoils.f90 and PlantChillers.f90. Templates are also available as separate
files in Internal Documentation / Programming Templates.

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 26

How it fits together

Although we have designed the EnergyPlus modules to be as independent as possible,
obviously they cannot be completely independent. How does an EnergyPlus HVAC
module fit in with the rest of the program? First, we will show some subroutine calling
trees that will display the overall program structure.

Top Level Calling Tree

EnergyPlus

 ProcessInput (in InputProcessor)
 ManageSimulation (in SimulationManager)
 ManageWeather (in WeatherManager)
 ManageHeatBalance (in HeatBalanceManager)
 ManageSurfaceHeatBalance (in HeatBalanceSurfaceManager)
 ManageAirHeatBalance (in HeatBalanceAirManager)
 CalcHeatBalanceAir (in HeatBalanceAirManager)
 ManageHVAC (in HVACManager)

The HVAC part of EnergyPlus is divided into a number of simulation blocks. At this
point, there are blocks for the air system, the zone equipment, the plant supply, the plant
demand, the condenser supply, and the condenser demand. There will be simulation
blocks for waste heat supply and usage as well as electricity and gas. Within each
HVAC time step, the blocks are simulated repeatedly until the conditions on each side of
each block interface match up. The following calling tree represents the high level
HVAC simulation structure. It is schematic – not all routines are shown.

High Level HVAC Calling Tree

ManageHVAC (in HVACManager)

 ZoneAirUpdate(‘PREDICT’, . . .) (in HVACManager)
estimate the zone heating or cooling demand

 SimHVAC (in HVACManager)
 ManageSetPoints (in SetPointManager)
 SimSelectedEquipment (in HVACManager)
 ManageAirLoops (in SimAirServingZones)
 ManageZoneEquipment (in ZoneEquipmentManager)
 ManagePlantSupplySides (in PlantLoopSupplySideManager)
 ManagePlantDemandSides (in PlantdemandSideLoops)
 ManageCondSupplySides (in CondLoopManager)
 ManageCondenserDemandSides (in CondenserDemandSideLoops)

 ZoneAirUpdate(‘CORRECT’, . . .) (in HVACManager)

From the amount of heating and cooling actually provided by the HVAC system,
calculate the zones’ temperatures.

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 27

Each of the “Manage” routines has a different structure, since the simulation to be
performed is different in each case. We will show schematic calling trees for several of
the “Manage” routines.

Air System Calling Tree

ManageAirLoops (in SimAirServingZones)

 GetAirPathData (in SimAirServingZones)
 InitAirLoops (in SimAirServingZones)
 SimAirLoops (in SimAirServingZones)
 SimAirLoopComponent (in SimAirServingZones)
 UpdateBranchConnections (in SimAirServingZones)
 ManageOutsideAirSystem (in MixedAir)
 SimOutsideAirSys (in MixedAir)
 SimOAController (in MixedAir)
 SimOAComponent (in Mixed Air)
 SimOAMixer (in MixedAir)
 SimulateFanComponents(in FanSimulation; file

HVACFanComponent)
 SimulateWaterCoilComponents (in WaterCoilSimulation; file

HVACWaterCoilComponent)
 SimHeatRecovery (in HeatRecovery)
 SimDesiccantDehumidifier (in DesiccantDehumidifiers)

 SimulateFanComponents (in FanSimulation; file HVACFanComponent)
 SimulateWaterCoilComponents (in WaterCoilSimulation; file

HVACWaterCoilComponent)
 SimulateHeatingCoilComponents (in HeatingCoils; file HVACHeatingCoils)
 SimDXCoolingSystem (in HVACDXSystem)
 SimFurnace (in Furnaces; file HVACFurnace)
 SimHumidifier (in Humidifiers)
 SimEvapCooler (in EvaporativeCoolers; file HVACEvapComponent)
 SimDesiccantDehumidifier (in DesiccantDehumidifiers)
 SimHeatRecovery (in HeatRecovery)

 ManageControllers (in Controllers)
 GetControllerInput (in Controllers)
 InitController (in Controllers)
 SimpleController (in Controllers)
 LimitController (in Controllers)
 UpdateController (in Controllers)
 Report Controller (in Controllers)

 ResolveSysFlow (in SimAirServingZones)
 UpdateHVACInterface (in HVACInterfaceManager)

 ReportAirLoops (in SimAirServingZones)

Plant Supply Calling Tree

ManagePlantSupplySides (in PlantLoopSupplySideManager)

 GetLoopData (in PlantLoopSupplySideManager)
 SetLoopInitialConditions (in PlantLoopSupplySideManager)

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 28

 CalcLoopDemand (in PlantLoopSupplySideManager)
 ManagePlantLoopOperation (in PlantCondLoopOperation)
 DistributeLoad (in PlantLoopSupplySideManager)
 SimPlantEquip (in PlantLoopSupplySideManager)
 SimPipes (in Pipes; file PlantPipes)
 SimPumps (in Pumps; file PlantPumps)
 SimEngineDrivenChiller (in ChillerEngineDriven ; file PlantChillers)
 SimBLASTAbsorber (in ChillerAbsorption ; file PlantAbsorptionChillers)
 SimElectricChiller (in ChillerElectric ; file PlantChillers)
 SimGTChiller (in ChillerGasTurbine ; file PlantChillers)
 SimConstCOPChiller (in ChillerConstCOP; file PlantChillers)
 SimBLASTChiller (in ChillerBLAST ; file PlantChillers)
 SimOutsideCooling (in OutsideCoolingSources ; file

PlantOutsideCoolingSources)
 SimGasAbsorber (in ChillerGasAbsorption ; file PlantGasAbsorptionChiller)
 SimBoiler (in Boilers; file PlantBoilers)
 SimWaterHeater (in WaterHeaters ; file PlantWaterHeater)
 SimOutsideHeating (in OutsideHeatingSources; file

PlantOutsideHeatingSources)
 UpdateSplitter (in PlantLoopSupplySideManager)
 SolveFlowNetwork (in PlantLoopSupplySideManager)
 CalcLoopDemand (in PlantLoopSupplySideManager)
 SimPlantEquip (in PlantLoopSupplySideManager)
 UpdateSplitter
 UpdateMixer (in PlantLoopSupplySideManager)
 SimPlantEquip (in PlantLoopSupplySideManager)
 CheckLoopExitNodes (in PlantLoopSupplySideManager)
 UpdateHVACInterface (in HVACInterfaceManager)
 UpdateReportVars (in PlantLoopSupplySideManager)

Zone Equipment Calling Tree

ManageZoneEquipment (in ZoneEquipmentManager)

 GetZoneEquipment (in ZoneEquipmentManager)
 InitZoneEquipment (in ZoneEquipmentManager)
 SimZoneEquioment (in ZoneEquipmentManager)
 SimAirLoopSplitter (in Splitters; file HVACSplitterComponent)
 SimAirZonePlenum (in ZonePlenum; file ZonePlenumComponent)
 SetZoneEquipSimOrder (in ZoneEquipmentManager)
 InitSystemOutputRequired (in ZoneEquipmentManager)
 ManageZoneAirLoopEquipment (in ZoneAirLoopEquipmentManager)
 GetZoneAirLoopEquipment (in ZoneAirLoopEquipmentManager)
 SimZoneAirLoopEquipment (in ZoneAirLoopEquipmentManager)
 SimulateDualDuct (in DualDuct; file HVACDualDuctSystem)
 GetDualDuctInput (in DualDuct; file HVACDualDuctSystem)
 InitDualDuct (in DualDuct; file HVACDualDuctSystem)
 SimDualDuctConstVol (in DualDuct; file HVACDualDuctSystem)
 SimDualDuctVarVol (in DualDuct; file HVACDualDuctSystem)

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 29

 UpdateDualDuct (in DualDuct; file HVACDualDuctSystem)
 ReportDualDuct (in DualDuct; file HVACDualDuctSystem)

 SimulateSingleDuct (in SingleDuct; file HVACSingleDuctSystem)
 GetSysInput (in SingleDuct; file HVACSingleDuctSystem)
 InitSys (in SingleDuct; file HVACSingleDuctSystem)
 SimConstVol (in SingleDuct; file HVACSingleDuctSystem)
 SimVAV (in SingleDuct; file HVACSingleDuctSystem)
 ReportSys (in SingleDuct; file HVACSingleDuctSystem)

 SimPIU (in PoweredInductionUnits)
 GetPIUs (in PoweredInductionUnits)
 InitPIUs (in PoweredInductionUnits)
 CalcSeriesPIU (in PoweredInductionUnits)
 CalcParallelPIU (in PoweredInductionUnits)
 ReportPIU (in PoweredInductionUnits)

 SimDirectAir (in DirectAirManager; file DirectAir)
 SimPurchasedAir (in PurchasedAirManager)
 SimWindowAC (in WindowAC)
 SimFanCoilUnit (in FanCoilUnits)
 SimUnitVentilator (in UnitVentilator)
 SimUnitHeater (in UnitHeater)
 SimBaseboard (in BaseboardRadiator)
 SimHighTempRadiantSystem (in HighTempRadiantSystem; file

RadiantSystemHighTemp)
 SimLowTempRadiantSystem (in LowTempRadiantSystem; file

RadiantSystemLowTemp)
 SimulateFanComponents (in Fans; file HVACFanComponent)
 SimHeatRecovery (in HeatRecovery)
 UpdateSystemOutputRequired (in ZoneEquipmentManager)
 SimAirLoopSplitter (in Splitters; file HVACSplitterComponent)
 SimAirZonePlenum (in ZonePlenum; file ZonePlenumComponent)
 CalcZoneMassBalance (in ZoneEquipmentManager)
 CalcZoneLeavingConditions (in ZoneEquipmentManager)
 SimReturnAirPath (in ReturnAirPathManager; file ReturnAirPath)
 SimAirMixer (in Mixers; HVACMixerComponent)
 SimAirZonePlenum (in ZonePlenum; file ZonePlenumComponent)

 RecordZoneEquipment (in ZoneEquipmentManager)
 ReportZoneEquipment (in ZoneEquipmentManager)

Inserting the New Module into the Program

Let us return to our example new module NewHVACComponent. Since the module
does its own input and output, adding the NewHVACComponent model to the program
simply means adding a call to the driver routine SimNewHVACComponent from the
correct place in EnergyPlus. In the simplest case, there is only one location from which
the driver routine should be called. In some cases, though, more than one HVAC
simulation block will need to use the new component model.
SimulateWaterCoilComponents, for instance, is used in the zone equipment for reheat
coils, and in the air system for heating and cooling coils. In the air system simulation it is
called from two places: the main air system simulation, and the mixed air simulation –
the outside air duct might contain a separate cooling coil.

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 30

Let us assume that the NewHVACComponent will be part of the air system – perhaps it
is a solid desiccant wheel. Examining the air system calling tree we see that
SimAirLoopComponent is one routine that will invoke the new component, and - if we
want the component to possibly be in the outside air stream – then SimOAComponent is
the other routine that will need to call the new component simulation. Generally, all that
is involved is adding a new CASE statement to a Fortran SELECT construct. For
instance in SimAirLoopComponent this would look like:

SELECT CASE(CompType)

CASE('OUTSIDE AIR SYSTEM')
 CALL ManageOutsideAirSystem(CompName,FirstHVACIteration,LastSim)

! Fan Types for the air sys simulation
 CASE('FAN:SIMPLE:CONSTVOLUME')
 CALL SimulateFanComponents(CompName,FirstHVACIteration)
 CASE('FAN:SIMPLE:VARIABLEVOLUME')
 CALL SimulateFanComponents(CompName,FirstHVACIteration)

! Coil Types for the air sys simulation
 CASE('COIL:WATER:SIMPLECOOLING')
 CALL SimulateWaterCoilComponents(CompName,FirstHVACIteration)
 CASE('COIL:WATER:SIMPLEHEATING')
 CALL SimulateWaterCoilComponents(CompName,FirstHVACIteration)
 CASE('COIL:WATER:DETAILEDFLATCOOLING')
 CALL SimulateWaterCoilComponents(CompName,FirstHVACIteration)
 CASE('COIL:ELECTRIC:HEATING')
 CALL SimulateHeatingCoilComponents(CompName=CompName,&
 FirstHVACIteration=FirstHVACIteration, &
 QCoilReq=0.0)
CASE('COIL:GAS:HEATING')
 CALL SimulateHeatingCoilComponents(CompName=CompName,&
 FirstHVACIteration=FirstHVACIteration, &
 QCoilReq=0.0)
 CASE('DXSYSTEM:AIRLOOP')
 CALL SimDXCoolingSystem(CompName)

 CASE('FURNACE:BLOWTHRU:HEATONLY')
 CALL SimFurnace(CompName, FirstHVACIteration)
 CASE('FURNACE:BLOWTHRU:HEATCOOL')
 CALL SimFurnace(CompName, FirstHVACIteration)
 CASE('UNITARYSYSTEM:BLOWTHRU:HEATONLY')
 CALL SimFurnace(CompName, FirstHVACIteration)
 CASE('UNITARYSYSTEM:BLOWTHRU:HEATCOOL')
 CALL SimFurnace(CompName, FirstHVACIteration)

! Humidifier Types for the air system simulation
 CASE('HUMIDIFIER:STEAM:ELECTRICAL')
 CALL SimHumidifier(CompName,FirstHVACIteration)

! Evap Cooler Types for the air system simulation
 CASE('EVAPCOOLER:DIRECT:CELDEKPAD')
 CALL SimEvapCooler(CompName)
 CASE('EVAPCOOLER:INDIRECT:CELDEKPAD')
 CALL SimEvapCooler(CompName)
 CASE('EVAPCOOLER:INDIRECT:WETCOIL')
 CALL SimEvapCooler(CompName)

! Desiccant Dehumidifier Types for the air system simulation
 CASE('DESICCANT DEHUMIDIFIER:SOLID')
 CALL SimDesiccantDehumidifier(CompName,FirstHVACIteration)

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 31

! Heat recovery
 CASE('HEAT EXCHANGER:AIR TO AIR:FLAT PLATE')
 CALL SimHeatRecovery(CompName,FirstHVACIteration)

! New HVAC Component
 CASE (‘NEW HVAC COMPONENT’)
 CALL SimNewHVACComponent(CompName,FirstHVACIteration)

END SELECT

The new code is italicized. Do the same thing in SimOAComponent and you are done!
Note that “NEW HVAC COMPONENT” is the class name (keyword) for the new
component on the IDD file. The class names are converted to upper case in
EnergyPlus, so the CASE statement must have the class name in upper case. The
actual class name on the IDD file would probably be “New HVAC Component.

If the new HVAC component is a piece of zone equipment – a cooled beam system, for
instance – then the zone equipment calling tree indicates that the call to
SimNewHVACComponent would be in SimZoneEquipment. If the new component is a
gas fired absorption chiller, the call would be in SimPlantEquip.

In every case, since NewHVACComponent is a new module, a USE statement must be
added to the calling subroutine. For instance in SimAirLoopComponent this would look
like:

SUBROUTINE SimAirLoopComponent(CompType, CompName, FirstHVACIteration,
LastSim)

 ! SUBROUTINE INFORMATION
 ! AUTHOR: Russ Taylor, Dan Fisher, Fred Buhl
 ! DATE WRITTEN: Oct 1997
 ! MODIFIED: Dec 1997 Fred Buhl
 ! RE-ENGINEERED: This is new code, not reengineered

 ! PURPOSE OF THIS SUBROUTINE:
 ! Calls the individual air loop component simulation
routines

 ! METHODOLOGY EMPLOYED: None

 ! REFERENCES: None

 ! USE Statements
 USE Fans, Only:SimulateFanComponents
 USE WaterCoils, Only:SimulateWaterCoilComponents
 USE MixedAir, Only:ManageOutsideAirSystem
 USE NewHVACComponent, Only:SimNewHVACComponent

Considerations for Legacy Codes

Some special considerations should be taken by those module developers who are
adding to EnergyPlus’s capabilities by adapting existing codes into the module structure.

Legacy codes will typically come with their own input and output structures. In adapting
this to use with EnergyPlus, the module developer will usually want to bypass these
routines by either embedding the code into EnergyPlus and using input entirely from the
IDD/IDF structure OR writing a simple input file to the legacy code. Either of these
approaches can be used.

MODULE DEVELOPER'S GUIDE HOW IT FITS TOGETHER

4/26/02 32

Code Readability vs. Speed of Execution

Programmers throughout time have had to deal with speed of code execution and it’s an
ongoing concern. However, compilers are pretty smart these days and, often, can
produce speedier code for the hardware platform than the programmer can when he or
she uses “speed up” tips. The EnergyPlus development team would rather the code be
more “readable” to all than to try to outwit the compilers for every platform. First and
foremost, the code is the true document of what EnergyPlus does – other documents will
try to explain algorithms and such but must really take a back seat to the code itself.

However, many people may read the code – as developers, we should try to make it as
readable at first glance as possible. For a true example from the code and a general
indication of preferred style, take the case of the zone temperature update equation. In
the engineering document, the form is recognizable and usual:

2 3

inf supply

1 1 1

inf

1 1

3 1
3

2 3

11

6

surfacessl zones

surfaces zones

NN N

t t t t t tz

i i i si i p zi p sys p z z z

t i i i

z N N

z

i i p p sys

i i

C
Q h AT mC T m C T m C T T T T

t
T

C
h A mC m C m C

t

δ δ δ

δ

δ

− − −
∞

= = =

= =

+ + + + − − + −
=

+ + + +

∑ ∑ ∑

∑ ∑
And, this equation appears in the code (ZoneTempPredictorCorrector Module), as:

ZT(ZoneNum)= (CoefSumhat + CoefAirrat*(3.0*ZTM1(ZoneNum) - (3.0/2.0)*ZTM2(ZoneNum) &
 + (1./3.)* ZTM3(ZoneNum))) &
 / ((11.0/6.0)*CoefAirrat+CoefSumha)

somewhat abbreviated here due to lack of page width but still recognizable from the
original. A better version would actually be:

ZT(ZoneNum)= (CoefSumhat - CoefAirrat*(-3.0*ZTM1(ZoneNum) + (3.0/2.0)*ZTM2(ZoneNum) &
 - (1./3.)* ZTM3(ZoneNum))) &
 / ((11.0/6.0)*CoefAirrat+CoefSumha)

whereas the natural tendency of programming would lead to the less readable:

ZT(ZoneNum)= (CoefSumhat + CoefAirrat*(3.0*ZTM1(ZoneNum) – 1.5*ZTM2(ZoneNum) + .333333*
ZTM3(ZoneNum))) &
 / (1.83333*CoefAirrat+CoefSumha)

The final version is a correct translation (more or less) from the Engineering/usual
representation but much harder to look at in code and realize what is being represented.

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 33

EnergyPlus Services

EnergyPlus provides some standard services that make the developers task much
easier. The developer can concentrate on the new simulation algorithm rather than have
to deal with details of input file structure, writing output, obtaining scheduled data, and
accessing weather variables.

Global Data

We have tried to limit the amount of global data in EnergyPlus development. Two critical
data-only modules, however, have been used:

DataGlobals – contains truly global data (such as number of zones, current hour,
simulation status flags, interface statements to error and output routines)

DataEnvironment – contains weather data that is global (current dry bulb, outside
barometric pressure)

These are used in routines as the examples have illustrated.

Input Services

All input is processed by the EnergyPlus module: InputProcessor. The InputProcessor
uses the definition lines in the IDD as directives on how to process each input object.
The InputProcessor also turns all alpha strings into all UPPER CASE. Currently, it does
nothing else to those strings – so the number of blanks in a string must match what the
calculational modules expect. The InputProcessor processes all numeric strings into
single precision real numbers. Special characters, such as tabs, should not be included
in the IDF.

The EnergyPlus module InputProcessor provides several routines - generically called
the “get” routines – that enable the developer to readily access the data for a new
module. These routines are made available by including a “USE InputProcessor”
statement in the module or in the routine that will use the “get” routines. The
GetFanInput subroutine in the example illustrates some of the uses of the “get” routines.

GetNumObjectsFound

This function returns the number of objects in the input belonging to a particular class.
In other terms, it returns the number of instances in the input of a particular component.

Example:
NumVAVSys = GetNumObjectsFound('SINGLE DUCT:VAV:REHEAT')

Here NumVAVSys will contain the number of single duct VAV terminal units in the input.
SINGLE DUCT:VAV:REHEAT is the class name or keyword defining VAV terminal unit
input on the IDD file.

GetObjectItem

This subroutine is used to obtain the actual alphanumeric and numeric data for a
particular object.

Example:

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 34

INTEGER :: SysNum
INTEGER :: SysIndex
INTEGER :: NumAlphas
INTEGER :: NumNums
INTEGER :: IOSTAT
REAL, DIMENSION(5) :: NumArray
CHARACTER(len=MaxNameLength), DIMENSION(8) :: AlphArray
.
! Flow
NumVAVSys = GetNumObjectsFound('SINGLE DUCT:VAV:REHEAT')
.
!Start Loading the System Input
DO SysIndex = 1, NumVAVSys
 CALL GetObjectItem('SINGLE DUCT:VAV:REHEAT’,SysIndex,AlphArray,&
 NumAlphas,NumArray,NumNums,IOSTAT)
 SysNum = SysIndex

 Sys(SysNum)%SysName = AlphArray(1)
 Sys(SysNum)%SysType = 'SINGLE DUCT:VAV:REHEAT'
 Sys(SysNum)%ReheatComp = AlphArray(6)
 Sys(SysNum)%ReheatName = AlphArray(7)

END DO ! end Number of Sys Loop END IF

Here GetObjectItem is called with inputs 'SINGLE DUCT:VAV:REHEAT' – the class of
object we want to input – and SysIndex – the index of the object on the input file. If
SysIndex is 3, the call to GetObjectItem will get the data for the third VAV terminal unit
on the input file. Output is returned in the remaining arguments. AlphArray contains in
order all the alphanumeric data items for a single VAV terminal unit. NumArray contains
all the numeric data items. NumAlphas is the number of alphanumeric items read;
NumNums is the number of numeric data items read. IOSTAT is a status flag: -1 means
there was an error; +1 means the input was OK. AlphArray and NumArray should be
dimensioned to handle the largest expected input for the item.

GetNodeNums

Nodes have unique names on the input file. Internally nodes are referenced as numbers.
GetNodeNums handles the assignment of a unique number to each node.

Example:
CHARACTER(len=MaxNameLength), DIMENSION(4) :: AlphArray
INTEGER :: NumNodes
INTEGER, DIMENSION(25) :: NodeNums
.
CALL GetNodeNums(AlphArray(3),NumNodes,NodeNums)
.
Fan(FanNum)%InletNodeNum = NodeNums(1)

The first argument is a node name or the name of a Node List, the second argument is
the number of nodes in the Node List (1 for a single node), and the last argument is the
output: a list of node numbers.

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 35

GetObjectItemNum

GetObjectItem requires the input file index of the desired object in order to get the
object’s data. Sometimes this index may be unknown, but the name of the object is
known. GetObjectItemNum returns the input file index given the class name and object
name.

Example:
ListNum = GetObjectItemNum('CONTROLLER LIST',ControllerListName)

In the example, ListNum will contain the input file index of the ‘CONTROLLER LIST’
whose name is contained in the string variable ControllerListName.

FindItemInList
This function looks up a string in a similar list of items and returns
the index of the item in the list, if found. It is case sensitive.
Example:
SysNum = FindItemInList(CompName,Sys%SysName,NumSys)

CompName is the input string, Sys%SysName is the list of names to be searched, and
NumSys is the size of the list.

A case insensitive version of the routine is called FindItem (same description).

SameString

This function returns true if two strings are equal (case insensitively).

Example:
IF (SameString(InputRoughness,'VeryRough')) THEN
 Material(MaterNum)%Roughness=VeryRough
ENDIF

VerifyName

This subroutine checks that an object name is unique; that is, it hasn’t already been
used for the same class of object and the name is not blank.

Example:
CALL VerifyName(AlphArray(1),Fan%FanName, &
 FanNum-1,IsNotOK,IsBlank,'FAN:SIMPLE:CONSTVOLUME Name')

The first argument is the name to be checked, the second is the list of names to search,
the third argument is number of entries in the list, the 4th argument is set to TRUE is
verification fails, the 5th argument is set to true if the name is blank, and the last
argument is part of the error message written to the error file when verification fails.

Schedule Services

Schedules are widely used in specifying input for building simulation programs. For
instance heat gains from lighting, equipment and occupancy are usually specified using
schedules. Schedules are used to indicate when equipment is on or off. Schedules are

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 36

also used to specify zone and system set points. EnergyPlus uses schedules in all these
ways and provides services that make using schedules very easy for the developer.

Schedules are specified in a three level hierarchy in EnergyPlus input. The relevant
portion of the IDD file is:

\group Schedules

ScheduleType,
 \memo ScheduleType contains ScheduleTypes for DAYSCHEDULE, and SCHEDULE
 A1, \field ScheduleType Name
 \reference ScheduleTypeNames
 \memo used to validate ScheduleType in SCHEDULE and DAYSCHEDULE objects
 A2, \field range
 \note put in minimum:maximum here or blank if not a limited value, e.g.
 \note 0.0:1.0 for fraction
 A3; \field Numeric Type
 \note Numeric type is either Continuous (all numbers within the min and
 \note max are valid or Discrete (only integer numbers between min and
 \note max are valid. (Could also allow REAL and INTEGER to mean the
 \note same things
 \type choice
 \key CONTINUOUS
 \key DISCRETE

DAYSCHEDULE,
 \memo A DAYSCHEDULE contains 24 values for each hour of the day.
 A1 , \field Name
 \type alpha
 \reference DayScheduleNames
 A2 , \field ScheduleType
 \type object-list
 \object-list ScheduleTypeNames
 N1 , \field Hour 1
 \type real
 N2 , \field Hour 2
 \type real

 N24; \field Hour 24
 \type real

WEEKSCHEDULE,
 \memo A WEEKSCHEDULE contains 12 DAYSCHEDULES, one for each day type.
 A1 , \field Name
 \reference WeekScheduleNames
 \type alpha
 A2 , \field Sunday
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name

 A7 , \field Friday
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name
 A8 , \field Saturday
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name
 A9 , \field Holiday
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name
 A10, \field Summer Design Day
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name
 A11, \field Winter Design Day
 \type object-list
 \object-list DayScheduleNames

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 37

 \note DAYSCHEDULE Name
 A12, \field Special Day1
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name
 A13; \field Special Day2
 \type object-list
 \object-list DayScheduleNames
 \note DAYSCHEDULE Name

SCHEDULE,
 \memo A SCHEDULE contains from 1 to 18 WEEKSCHEDULES
 A1 , \field Name
 \type alpha
 \reference ScheduleNames
 A2 , \field ScheduleType
 \type object-list
 \object-list ScheduleTypeNames
 A3 , \field Name of WEEKSCHEDULE 1
 \type object-list
 \object-list WeekScheduleNames
 N1 , \field Start Month 1
 \type integer
 \minimum 1
 \maximum 12
 N2 , \field Start Day 1
 \type integer
 \minimum 1
 \maximum 31
 N3 , \field End Month 1
 \type integer
 \minimum 1
 \maximum 12
 N4 , \field End Day 1
 \type integer
 \minimum 1
 \maximum 31

 A20, \field Name of WEEKSCHEDULE 18
 \type object-list
 \object-list WeekScheduleNames
 N69, \field Start Month 18
 \type integer
 \minimum 1
 \maximum 12
 N70, \field Start Day 18
 \type integer
 \minimum 1
 \maximum 31
 N71, \field End Month 18
 \type integer
 \minimum 1
 \maximum 12
 N72; \field End Day 18
 \type integer
 \minimum 1
 \maximum 31

An example from in input (IDF) file:

ScheduleType,Fraction, 0.0 : 1.0 ,CONTINUOUS;
.
 DAYSCHEDULE, Day On Peak, Fraction,
 0.,0.,0.,0.,0.,0.,0.,0.,0.,1.,1.,1.,1.,1.,1.,1.,1.,1.,0.,0.,0.,0.,0.,0.;
 WEEKSCHEDULE, Week on Peak,
 Day On Peak,Day On Peak,Day On Peak,
 Day On Peak,Day On Peak,Day On Peak,
 Day On Peak,Day On Peak,Day On Peak,

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 38

 Day On Peak,Day On Peak,Day On Peak;
 SCHEDULE, On Peak, Fraction,
 Week On Peak, 1,1, 12,31;

A day schedule assigns a number to each hour of the day. The week schedule assigns a
day schedule to each day of the week plus holiday and some special days. Schedule
assigns week schedules to various periods of the year. Both day schedules and
schedules reference a schedule type. A schedule type is characterized by a range (e.g.
0 to 1) and whether it is continuous (can assume any value) or discrete (can assume
integer values only). The following routines from the ScheduleManager module enable
the developer to use schedules in a simulation.

GetScheduleIndex

This function takes a schedule name as input and returns an internal pointer to the
schedule. Schedule values will always be accessed via the pointer not the name during
the simulation for reasons of efficiency. This function should be called once for each
schedule during the input phase and the returned value stored in the appropriate data
structure.

Example
Baseboard(BaseboardNum)%SchedPtr = GetScheduleIndex(AlphArray(2))

Here the schedule pointer for the schedule name contained in AlphArray(2) is stored in
the baseboard data structure for later use.

GetCurrentScheduleValue

This function returns the current schedule value for the current day and time, given the
schedule pointer as input. An optional second argument can be used to specify a
different hour than the current global hour of the day.

Example
CloUnit = GetCurrentScheduleValue(People(PeopleNum)%ClothingPtr)

Notice that the developer doesn’t have to keep track of hour of the day, day of the
month, or month. The program does all of that. The only input needed is the pointer to
the schedule.

Performance Curve Services

Some HVAC equipment models in EnergyPlus use performance curves. These are
polynomials in one or two independent variables that are used to modify rated
equipment performance for performance at the current, off-rated conditions. Most often
the curves are functions of temperature – entering wetbulb and outside drybulb, for
instance – or of the part load fraction. EnergyPlus provides services to input, store, and
retrieve curve data and to evaluate curves given values of the independent variables.
There are 3 curve objects: CURVE:QUADRATIC, CURVE:CUBIC, and
CURVE:BIQUADRATIC.

GetCurveIndex

This function takes a curve name as input and returns an internal pointer to the curve.
Curve values will always be accessed via the pointer not the name during the simulation

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 39

for reasons of efficiency. This function is usually called once for each curve during the
input phase.

DXCoil(DXCoilNum)%CCapFTemp = GetCurveIndex(Alphas(5))
 IF (DXCoil(DXCoilNum)%CCapFTemp .EQ. 0) THEN
 CALL ShowSevereError('COIL:DX:BF-Empirical not found=’ &
 //TRIM(Alphas(5)))
 ErrorsFound = .TRUE.
 END IF

CurveValue

This function takes the curves index and one or two independent variables as input and
returns the curve value.

! Get total capacity modifying factor (function of temperature)
! for off-rated conditions
50 TotCapTempModFac = CurveValue(DXCoil(DXCoilNum)%CCapFTemp,
 InletAirWetbulbC, &
 OutDryBulbTemp)

Fluid Property Services

Fluid properties, rather than a set of embedded calculation, have been implemented with
a view to flexibility for EnergyPlus developers and users. Module developers can easily
call a set of routines within EnergyPlus and need only tell the users of appropriate inputs
for their models. Extensive Reference Data Sets (RDS) of fluid properties are provided
for the users.

Using Fluid Property Routines in EnergyPlus Modules

The routines consist of a single module:

FindProperties.f90

You can use the routines anywhere inside EnergyPlus. Just be sure that the module or
routine you are in has the following USE statement:

USE FluidProperties

There are eight possible calls to this module. They are listed and explained below. Note
that all are real functions (not subroutines) so a call is not necessary—just an
assignment statement.

REAL FUNCTION GetSatEnthalpyRefrig(Refrigerant, Temperature, Quality)
REAL FUNCTION GetSatDensityRefrig(Refrigerant, Temperature, Quality)
REAL FUNCTION GetSatSpecificHeatRefrig(Refrigerant, Temperature, Quality)
REAL FUNCTION GetSupHeatEnthalpyRefrig(Refrigerant, Temperature,
Pressure)
REAL FUNCTION GetSupHeatPressureRefrig(Refrigerant, Temperature,
Enthalpy)
REAL FUNCTION GetSupHeatDensityRefrig(Refrigerant, Temperature,
Pressure)
REAL FUNCTION GetSpecificHeatGlycol(Refrigerant, Temperature,
Concentration)
REAL FUNCTION GetQualityRefrig(Refrigerant, Temperature, Enthalpy)

Units for these variables are Joules per kilogram for enthalpy, degrees Celsius for
temperature, Pascals for pressure, kilograms per cubic meter for density, and Joules per

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 40

kilogram-degree Celsius for specific heat. Quality and concentration are dimensionless
fractions. All variables are considered input variables. The refrigerant name is as it is
listed in the input file.

There are several occasions where regions are not loaded in, (or refrigerants that aren’t
listed above are missing completely). In this case, and some others, the program will
call ShowFatalError and deliver a message describing why things failed. Depending on
how InputProcessor is hooked up, this message should print upon program exit.

The regions that ARE included are as follows (temperatures in Celsius, pressure in
MegaPascals):

Table 1. Regions for Fluid Properties

Refrigerant Sat. Temp range Super Temp
range*

Super Pressure range*

R11 -70 to 198 -56.67 to 287.78 .001 to 1.379

R11(specheat) -73 to 187

R12 -100 to 111.8 -63 to 297 .01 to 8.0

R12(specheat) -103 to 97

R22 -90 to 96.15 -67.78 to 243.33 .021 to 3.31

R22(specheat) -103 to 87

NH3 -77.67 to 132.3 -45.6 to 198.9 .0345 to 1.93

NH3(specheat) -73 to 127

Steam -60 to 200 100 to 1300 .01 to 60.0

Steam(specheat
)

0 to 100

*Obviously data for all temperatures at all pressures isn't loaded. The entire range of
pressures given above will work, but the temperature range for a given pressure will be
some subset of the Super Temp range shown above.

Subcooled region actually only returns h(f) or the saturated liquid value at the
temperature you input.

Note also that only specific heat is available for glycol solutions. For all other
refrigerants, enthalpy, density, and specific heat are available in the saturated region
while only enthalpy and density are available in the superheated region.

Fluid Property Data and Expanding the Refrigerants Available to EnergyPlus

The Fluid Property routines have been reengineered to allow other users to add
refrigerants to the input file without having to make any changes to the program code.
The only requirement on input is that in order to add a new refrigerant, a user must enter
a full set of data. The exact definition of a full set of data is given below.

As with all EnergyPlus input, the fluid properties data has both an input data description
and a reference data set that must show up in the input file. All of the “standard”
refrigerants list above must show up in the in.idf file for it to be available to the rest of the
simulation. Below is the description of the input data description syntax for the fluid
properties entries.

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 41

The first syntax item lists all of the fluids present in an input file and categorizes them as
either a refrigerant (such as R11, R12, etc.) or a glycol (such as ethylene glycol,
propylene glycol, etc.). A refrigerant or glycol must show up in this list in order to used
as a valid fluid in other loops in the input file.

FluidNames,
 \unique-object
 \memo list of potential fluid names/types in the input file, maximum of ten
 A1, \field fluid name 1
 \type alpha
 A2, \field type of fluid for fluid name 1
 \type choice
 \key REFRIGERANT
 \key GLYCOL
 A3, \field fluid name 2
 \type alpha
 A4, \field type of fluid for fluid name 2
 \type choice
 \key REFRIGERANT
 \key GLYCOL
 . . . same thing repeated over and over again . . .
 A19, \field fluid name 10
 \type alpha
 A20; \field type of fluid for fluid name 10
 \type choice
 \key REFRIGERANT
 \key GLYCOL

An example of this statement in an input data file is:

FluidNames,
 R11, REFRIGERANT,
 R12, REFRIGERANT,
 R22, REFRIGERANT,
 NH3, REFRIGERANT,
 Steam, REFRIGERANT,
 EthyleneGlycol, GLYCOL,
 PropyleneGlycol, GLYCOL;

All fluid properties vary with temperature. As a result, the following syntax allows the
user to list the temperatures at which the data points are valid. Since in many cases, the
temperatures will be similar, this provides a more compact input structure and avoids
listing the temperatures multiple times. The name associated with the temperature list is
the piece of information that will allow the actual fluid property data statements to refer
back to or link to the temperatures. Up to 250 points may be entered with this syntax
and temperatures must be entered in ascending order. Units for the temperatures are
degrees Celsius. The same temperature list may be used by more than one refrigerant.

FluidPropertyTemperatures,
 \memo property values for fluid properties
 \memo list of up to 250 temperatures, note that number of property values must match the
number of properties
 \memo in other words, there MUST be a one-to-one correspondance between the property values
in this list and
 \memo the actual properties list in other syntax
 \units degrees C (for all temperature inputs)
 A1, \field temperature list name
 \type alpha
 N1, \field temperature 1
 \type real
 N2, \field temperature 2
 \type real
 . . . same thing repeated over and over again . . .
 N250; \field temperature 250
 \type real

An example of this statement in an input data file is:

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 42

FluidPropertyTemperatures,
 R11Temperatures,
 -70,-65,-60,-55,-50,-45,-40,-35,-30,-25,-20,-15,-10,-5,0,2,4,6,8,10,12,14,16,18,
 20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,55,60,65,70,75,80,85,90,95,100,
 105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,198;

Property data for the saturated region is entered with the following syntax. Before the
actual data is entered, this line of input must identify the refrigerant the data is to be
associated with, what the data represents (choice of one of three keywords), the phase
of the data (either fluid or the difference between fluid and gas), and the temperature list
reference that links each data point with a temperature.

FluidPropertySaturated,
 \memo fluid properties for the saturated region
 A1, \field fluid name (R11, R12, etc.)
 \reference FluidNames
 A2, \field fluid property type
 \type choice
 \key ENTHALPY ! Units are J/kg
 \key DENSITY ! Units are J/kg-K
 \key SPECIFICHEAT ! Units are kg/m^3
 A3, \field fluid phase
 \type choice
 \key FLUID ! saturated fluid
 \key FLUIDGAS ! difference between saturated fluid and saturated vapor
 A4, \field temperatures list name
 \reference FluidPropertyTemperatures
 N1, \field property value 1
 \type real
 N2, \field property value 2
 \type real
 . . . same thing repeated over and over again . . .
 N250; \field property value 250
 \type real

An example of this statement in an input data file is:

FluidPropertySaturated,
 R11,ENTHALPY,FLUID,R11Temperatures, ! Enthalpy in J/kg
 153580,154600,156310,158580,161300,164380,167740,171330,175100,179020,183060,
 187190,191400,195680,200000,201740,203490,205240,207000,208770,210530,212310,
 214080,215870,217650,219860,221230,223030,224830,226630,228860,230250,232060,
 233860,235700,237520,239350,241180,243010,246350,249450,254080,258730,263480,
 268110,272860,277000,282410,287240,292120,297030,302000,307090,312080,317210,
 322400,327670,333020,338460,344010,349680,355500,361480,367690,374100,381060,
 388850,397280,426300;

The format of the data for the superheated region is almost identical to that of the
saturated region with one addition—a pressure. The pressure is listed before the rest of
the data and has units of Pa.

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 43

FluidPropertySuperheated,
 \memo fluid properties for the saturated region
 A1, \field fluid name (R11, R12, etc.)
 \reference FluidNames
 A2, \field fluid property type
 \type choice
 \key ENTHALPY ! Units are J/kg
 \key DENSITY ! Units are J/kg-K
 \key SPECIFICHEAT ! Units are kg/m^3 (Currently this data is not used, entered,
 or expected)
 A3, \field temperatures list name
 \reference FluidPropertyTemperatures
 N1, \field pressure
 \memo pressure for this list of properties
 \type real
 \units Pa
 \minimum> 0.0
 N2, \field property value 1
 \type real
 N3, \field property value 2
 \type real
 . . . same thing repeated over and over again . . .
 N251; \field property value 250
 \type real

An example of this statement in an input data file is:

FluidPropertySuperheated,
 R11,DENSITY,SuperR11Temperatures, ! Density in kg/m^3
 62000., !Pressure = 62000Pa
 0,0,0,0,0,0,0,0.0139,0.0134,0.0129,0.0124,0.012,0.0116,0.0112,0.0109,0.0105,
 0.0102,0.0099,0.0097,0.0094,0.0092,0.0089,0,0,0,0,0,0,0,0,0,0;

The format of the data for the glycols is almost identical to that of the superheated region
with one exception—concentration replaces pressure. The concentration is listed before
the rest of the data and is dimensionless.

FluidPropertyConcentration,
 \memo fluid properties for water/other fluid mixtures
 A1, \field fluid name (ethylene glycol, etc.)
 \reference FluidNames
 A2, \field fluid property type
 \type choice
 \key ENTHALPY ! Units are J/kg (Currently this data is not used, entered,
 or expected)
 \key DENSITY ! Units are J/kg-K (Currently this data is not used, entered,
 or expected)
 \key SPECIFICHEAT ! Units are kg/m^3
 A3, \field temperatures list name
 \reference FluidPropertyTemperatures
 N1, \field concentration
 \memo glycol concentration for this list of properties
 \type real
 \units percentage (as a real decimal)
 \minimum 0.0
 \maximum 1.0
 N2, \field property value 1
 \type real
 N3, \field property value 2
 \type real
 . . . same thing repeated over and over again . . .
 N251; \field property value 250
 \type real

An example of this statement in an input data file is:

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 44

FluidPropertyConcentration,
 PropyleneGlycol,SPECIFICHEAT ,GlycolTemperatures, ! Specific heat in J/kg-K
 0.8, ! Concentration
 2572,2600,2627,2655,2683,2710,2738,2766,2793,2821,2849,2876,2904,2931,2959,
 2987,3014,3042,3070,3097,3125,3153,3180,3208,3236,3263,3291,3319,3346,3374,
 3402,3429,3457;

Other Useful Utilities

GetNewUnitNumber

Rather than attempt to keep track of all open files and distribute this list to everyone, we
have chosen to use a routine that does this operation. If you need to have a scratch file
(perhaps when porting legacy code into EnergyPlus modules), you can use the
GetNewUnitNumber function to determine a logical file number for the OPEN and
READ/WRITE commands. The function works by looking at all open assigned files and
returning a number that isn't being used. This implies that you will OPEN the unit
immediately after calling the function (and you should!).

Example:
INTEGER, EXTERNAL :: GetNewUnitNumber
…
myunit=GetNewUnitNumber()
OPEN(Unit=myunit,File=’myscratch’)

FindUnitNumber

If you want to find out a unit number for a file you think is already open, you can use the
FindUnitNumber function. For example, rather than creating a new unit for debug
output, you could latch onto the same unit as currently used for the “eplusout.dbg” file.

Example:
INTEGER, EXTERNAL :: FindUnitNumber
…
myunit=FindUnitNumber(‘eplusout.dbg’)

If that file is already opened, it will get back the unit number it is currently assigned to. If
it is not opened or does not exist, it will go ahead, get a unit number, and OPEN the file.
(Should not be used for Direct Access or Binary files!)

Weather Services

All weather data (including Design Day and Location validation) are processed by the
WeatherManager module. The SimulationManager invokes the WeatherManager at the
proper times to retrieve data. The WeatherManager will retrieve the proper data for the
current timestep/hour/day/month from the proper data source (design day definition,
weather data file). The WeatherManager puts weather-type data (outside dry bulb,
outside wet bulb, humidity, barometric pressure) into the DataEnvironment global data
area. There is no need for other modules to call the WeatherManager directly.
However, if there is some weather-type data that is needed and not provided in the
DataEnvironment global area, contact us.

Error Messages

Three error message routines are provided for the developer, indicating three different
levels of error severity: ShowFatalError, ShowSevereError, and ShowWarningError.
Each takes a string as an argument. The string is printed out as the message body on
the file “eplusout.err”. There are two additional optional arguments, which are file unit

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 45

numbers on which the message will also be printed. ShowFatalError causes the program
to immediately abort.

Example:

IF (Construct(ConstrNum)%LayerPoint(Layer) == 0) THEN
 CALL ShowSevereError(‘Did not find matching material for construct ‘ &
 //TRIM(Construct(ConstrNum)%Name)// &
 ‘ missing material = ‘ &
 //TRIM(ConstructAlphas(Layer)))
 ErrorsFound=.true.
ENDIF

Quite a complex message can be constructed using concatenation. These routines can
also be used to output numeric fields by writing the numeric variables to a string
variable, although this isn’t very convenient.

Flags and Parameters

Parameters

Constants that might be useful throughout the program are defined as Fortran
parameters in the DataGlobals data module. Examples include PI, PiOvr2,
DegToRadians, and MaxNameLength. DataHVACGlobals contains parameters that
might be useful anywhere in the HVAC simulation. Some examples are SmallTempDiff
and SmallMassFlow that can be used for preventing divide by zero errors. The full set of
global parameters can be obtained by examining the modules DataGlobals and
DataHVACGlobals.

Simulation Flags

A number of logical flags (variables that are either true or false) are used throughout
EnergyPlus. These flags are normally used to indicate the start or end of a time or
simulation period. The following shows a complete list.

In DataGlobals:

BeginSimFlag

Set to true until the actual simulation has begun, set to false after first
heat balance time step.

BeginFullSimFlag

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 46

Set to true until a full simulation begins (as opposed to a sizing
simulation); set to false after the first heat balance time step of the full
simulation.

EndSimFlag

Normally false, but set to true at the end of the simulation (last heat
balance time step of last hour of last day of last environment).

WarmupFlag

Set to true during the warmup portion of a simulation; otherwise false.

BeginEnvrnFlag

Set to true at the start of each environment (design day or run period), set
to false after first heat balance time step in environment. This flag should
be used for beginning of environment initializations in most HVAC
components. See the example module for correct usage.

EndEnvrnFlag

Normally false, but set to true at the end of each environment (last heat
balance time step of last hour of last day of environment).

BeginDayFlag

Set to true at the start of each day, set to false after first heat balance
time step in day.

EndDayFlag

Normally false, but set to true at the end of each day (last heat balance
time step of last hour of day).

BeginHourFlag

Set to true at the start of each hour, set to false after first heat balance
time step in hour.

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 47

EndHourFlag

Normally false, but set to true at the end of each hour (last heat balance
time step of hour)

BeginTimeStepFlag

Set to true at the start of each heat balance time step, set to false after
first HVAC step in the heat balance time step.

Note: never set to false!

EndTimeStepFlag

Normally false, but set to true at the end of each heat balance time step.

Note: never set to true!

In DataHVACGlobals:

FirstTimeStepSysFlag

Set to true at the start of the first HVAC time step within each heat
balance time step, false at the end of the HVAC time step. In other
words, this flag is true during the first HVAC time step in a heat balance
time step, and is false otherwise.

BeginAirLoopFlag

True for first SimAirLoop call; false thereafter.

Note: not used and not set!

In Subroutine SimHVAC:

FirstHVACIteration

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 48

True when HVAC solution technique on first iteration, false otherwise.
Passed as a subroutine argument into the HVAC equipment simulation
driver routines.

The most commonly used logical flag in the HVAC simulation is FirstHVACIteration that
is passed around as an argument among the HVAC simulation subroutines. The HVAC
simulation is solved iteratively each HVAC time step. FirstHVACIteration is true for the
first iteration in each time step and false for the remaining iterations.

Finally, each developer must define and set a “GetInput” flag to make sure input data is
read in only once. In the example module Fans the GetInput flag is GetInputFlag; the
new developer can follow this example in using such a flag.

Psychrometric services

EnergyPlus has a full complement of psychrometric functions. All the routines are
Fortran functions returning a single precision real value. All arguments and results are in
SI units.

rhoairfn(pb,tdb,w)

Returns the density of air in kilograms per cubic meter as a function of barometric
pressure [pb] (in Pascals), dry bulb temperature [tdb] (in Celsius), and humidity ratio [w]
(kilograms of water per kilogram of dry air).

cpairfn(w,T)

Returns the specific heat of air in Joules per kilogram degree Celsius as a function of
humidity ratio [w] (kilograms of water per kilogram of dry air) and dry bulb temperature
[T] (Celsius).

PSYDPT(TDB,TWB,PB)

Returns the dew point temperature in Celsius as a function of dry bulb temperature
[TDB] (Celsius), wet bulb temperature [TWB] (Celsius), and atmospheric pressure [PB]
(Pascals).

PSYDPW(W,PB)

Returns the dew point temperature in Celsius as a function of humidity ratio [W]
(kilograms of water per kilogram of dry air) and atmospheric pressure [PB] (Pascals).

PSYHTW(TDB,W)

Returns the specific enthalpy of air in Joules per kilogram as a function of dry bulb
temperature [TDB] (Celsius) and humidity ratio [W] (kilograms of water per kilogram of
dry air).

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 49

PSYHTR(TDB,RH,PB)

Returns the specific enthalpy of air in Joules per kilogram as a function of dry bulb
temperature [TDB] (Celsius), relative humidity [RH] (fraction), and atmospheric pressure
[PB] (Pascals).

PSYTHW(H,W)

Returns the air temperature in Celsius as a function of air specific enthalpy [H] (Joules
per kilogram) and humidity ratio [W] (kilograms of water per kilogram of dry air).

PSYRHT(TDB,W,PB)

Returns the relative humifity (fraction) as a function of of dry bulb temperature [TDB]
(Celsius), humidity ratio [W] (kilograms of water per kilogram of dry air) and atmospheric
pressure [PB] (Pascals).

PSYTWD(TDB,W,PB)

Returns the air wet bulb temperatute in Celsius as a function of dry bulb temperature
[TDB] (Celsius), humidity ratio [W] (kilograms of water per kilogram of dry air) and
atmospheric pressure [PB] (Pascals).

PSYVTW(TDB,W,PB)

Returns the specific volume in cubic meters per kilogram as a function of dry bulb
temperature [TDB] (Celsius), humidity ratio [W] (kilograms of water per kilogram of dry
air) and atmospheric pressure [PB] (Pascals).

PSYWDP(TDP,PB)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a function of
the dew point temperature [TDB] (Celsius) and atmospheric pressure [PB] (Pascals).

PSYWTH(TDB,H)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a function of
dry bulb temperature [TDB] (Celsius) and air specific enthalpy [H] (Joules per kilogram).

PSYWTP(TDB,TWB,PB)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a function of
dry bulb temperature [TDB] (Celsius), wet bulb temperature [TWB] (Celsius), and
atmospheric pressure [PB] (Pascals).

PSYWTR(TDB,RH,PB)

Returns the humidity ratio in kilograms of water per kilogram of dry air as a function of
dry bulb temperature [TDB] (Celsius), relative humidity [RH] (fraction), and atmospheric
pressure [PB] (Pascals).

SATUPT(T)

Returns the saturation pressure in Pascals as a function of the air saturation
temperature [T] (Celsius).

MODULE DEVELOPER'S GUIDE ENERGYPLUS SERVICES

4/26/02 50

SATUTH(H,PB)

Returns the air saturation temperature in Celsius as a function of air specific enthalpy [H]
(Joules per kilogram) and atmospheric pressure [PB] (Pascals).

SATUTP(P)

Returns the air saturation temperature in Celsius as a function of saturation pressure [P]
(Pascals).

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 51

HVAC Network

Branches, Connectors, and Nodes

In EnergyPlus, the HVAC system and plant form a network (technically, a graph). The
individual pieces of equipment – the fans, coils, chillers, etc. – are connected together by
air ducts and fluid pipes. In EnergyPlus nomenclature, the air and fluid circuits are called
loops. Specifying how an individual system and plant are connected is done in the
EnergyPlus input (IDF) file. The overall structure of the network is defined with Branch
and Connector objects. The detail is filled with components and their inlet and outlet
nodes. A Branch consists of one or more components arranged sequentially along a
pipe or duct. A Connector specifies how three or more branches are connected through
a Splitter or Mixer. Nodes connect components along a branch: the outlet node of one
component is the inlet node of the next downstream component. The nodes represent
conditions at a point on a loop. Each component has one or more inlet and outlet nodes,
depending on how many loops it interacts with. A fan, for instance, has one inlet node
and one outlet node, since it interacts with a single air loop. A water coil will have 2 inlet
and 2 outlet nodes, since it interacts with an air and a fluid loop. Figure 1 shows a
diagram of an EnergyPlus HVAC input.

Zone 3

Zone 2

Zone 1

16

19

22

Mixing

Damper

Mixing

Damper

Mixing

Damper

Purchased

Heating

30

29

50

31

Plant Supply Side

Cooling Loop
34

36 37 35

38 39

Chiller # 2

CW Pump

3 Splitter

3 Mixer

49

Purchased

Cooling

Cooling Tower

2 Split-

Cond

2 Mix-

Cond

Cond Pump

40

48

41 42 43 44

45

46

47

Cond Supply Side Loop

Cond Demand Side Loop

Chiller #1

40

51

3 Zone Dual Duct System

Bypass

B
y
p
a
s
s

B
y
p
a
s
s

1

24

2

4

7

6

11

8

12

9

13

10

14

15

18

21

17

20

23

3

5

Supply Fan

32

33

25

28

R
e

tu
rn

 A
ir
 M

ix
e

r

H
o

t A
ir S

p
litte

r

C
o

ld
 A

ir S
p

litte
r

Plant Supply Side

Heating Loop

Plant Demand Side

Cooling Loop

26

27

P
la

n
t D

e
m

a
n

d
 S

id
e

H
e

a
tin

g
 L

o
o

p

Supply Air Splitter

("Look Ahead")

CC

HC

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 52

Figure 1. HVAC Input Diagram

As an illustration of how such a network is built up on the IDF, here is the section of the
IDF that describes the supply fan, splitter, and heating and cooling coil section of the
dual duct air system.

BRANCH LIST,
 Dual Duct Air Loop Branches , ! Branch List Name
 Air Loop Main Branch , ! Branch Name 1
 Heating Coil Air Sys Branch , ! Branch Name 2
 Cooling Coil Air Sys Branch ; ! Branch Name 3

CONNECTOR LIST,
 Dual Duct Connectors , ! Connector List Name
 SPLITTER , ! Type of Connector 1
 DualDuctAirSplitter ; ! Name of Connector 1

BRANCH,
 Air Loop Main Branch , ! Branch Name
 1.3 , ! Maximum Branch Flow Rate
 FAN:SIMPLE:ConstVolume, Supply Fan 1,
 Supply Fan Inlet Node, Supply Fan Outlet Node, PASSIVE ;

BRANCH,
 Heating Coil Air Sys Branch , ! Branch Name
 1.3 , ! Maximum Branch Flow Rate
 COIL:Water:SimpleHeating, Main Heating Coil,
 Heating Coil Inlet Node, Heating Coil Outlet Node, ACTIVE ;

BRANCH,
 Cooling Coil Air Sys Branch , ! Branch Name
 1.3 , ! Maximum Branch Flow Rate
 COIL:Water:DetailedFlatCooling, Detailed Cooling Coil,
 Cooling Coil Inlet Node, Cooling Coil Outlet Node, ACTIVE ;

SPLITTER,
 DualDuctAirSplitter,
 Air Loop Main Branch,
 Heating Coil Air Sys Branch,
 Cooling Coil Air Sys Branch;

FAN:SIMPLE:ConstVolume,
 Supply Fan 1, !Fan Name
 FanAndCoilAvailSched, !Fan Schedule
 0.7, !Fan Efficiency
 600.0, !Delta Pressure [N/M^2]
 1.3, !Max Vol Flow Rate [m^3/Sec]
 0.9, !motor efficiency
 1.0, !motor in air stream fraction
 Supply Fan Inlet Node, ! Inlet Node
 Supply Fan Outlet Node; ! Outlet Node

COIL:Water:DetailedFlatCooling,
 Detailed Cooling Coil, !Name of cooling coil
 CoolingCoilAvailSched, !Cooling Coil Schedule
 1.1, !Max Water Flow Rate of Coil kg/sec
 6.23816, !Tube Outside Surf Area
 6.20007018, !Tube Inside Surf Area
 101.7158224, !Fin Surf Area
 0.300606367, !Min Air Flow Area

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 53

 0.165097968, !Coil Depth
 0.43507152, !Coil Height
 0.001499982, !Fin Thickness
 0.014449958, !Tube Inside Diameter
 0.015879775, !Tube Outside Diameter
 0.385764854, !Tube Thermal Conductivity
 0.203882537, !Fin Thermal Conductivity
 0.001814292, !Fin Spacing
 0.02589977, !Tube Depth
 6, !Number of Tube Rows
 16, !Number of Tubes per Row
 Cooling Coil Water Inlet Node, ! Coil Water Side Inlet
 Cooling Coil Water Outlet Node, ! Coil Water Side Outlet
 Cooling Coil Inlet Node, ! Coil Air Side Inlet
 Cooling Coil Outlet Node; ! Coil Air Side Outlet

COIL:Water:SimpleHeating,
 Main Heating Coil, !Name of heating coil
 FanAndCoilAvailSched, !heating Coil Schedule
 1200.0, !UA of the Coil
 4.3, !Max Water Flow Rate of Coil kg/sec
 Heating Coil Water Inlet, ! Coil Water Side Inlet
 Heating Coil Water Outlet,! Coil Water Side Outlet
 Heating Coil Inlet Node, ! Coil Air Side Inlet
 Heating Coil Outlet Node; ! Coil Air Side Outlet

Obviously, the creation of such a system/plant network description is best handled by a
GUI. However, for testing purposes a developer may have to create the input for a
component by hand and insert it into an existing IDF. Then the developer must be
careful to choose unique names for the branches and nodes and make sure the entire
network makes physical sense.

Nodes in the simulation

In the EnergyPlus data structure, the nodes are where each component model gets its
input and where it places its output. The module DataLoopNode contains all the node
related data. In particular, the array Node contains the state variables and mass flows for
all the nodes in the problem being simulated.

TYPE NodeData
 CHARACTER(len=MaxNameLength) :: FluidType
 REAL :: Temp
 REAL :: TempMin
 REAL :: TempMax
 REAL :: TempSetPoint
 REAL :: MassFlowRate
 REAL :: MassFlowRateMin
 REAL :: MassFlowRateMax
 REAL :: MassFlowRateMinAvail
 REAL :: MassFlowRateMaxAvail
 REAL :: MassFlowRateSetPoint
 REAL :: Quality
 REAL :: Press
 REAL :: Enthalpy
 REAL :: HumRat
 REAL :: HumRatMin
 REAL :: HumRatMax
 REAL :: HumRatSetPoint
 END TYPE NodeData

 !dim to num nodes in SimHVAC

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 54

 TYPE (NodeData), ALLOCATABLE, DIMENSION(:) :: Node

In our example module NewHVACComponent, the subroutine InitNewHVACComponent
is responsible for obtaining the input data from the inlet node(s) and putting it into the
component data structure for use in CalcNewHVACComponent. Then
UpdateNewHVACComponent takes the calculated data and moves it to the outlet nodes
for use by other components. EnergyPlus component models are assumed to be direct
models: inlets are input to the calculation and outlets are output from the calculations.

Data Flow in an HVAC Component Module

The data in an EnergyPlus HVAC component module resides in three places.

1. The component inlet nodes – this is where the data input to the model resides.

2. The component internal data structure(s) – one or more arrays of data structures
which contain all the data needed for the component simulation. This includes data
from the input file, data from the inlet nodes, and any schedule values. In addition,
these data structure(s) store the results of the calculation.

3. The component outlet nodes – data is moved from the internal data structure(s) to
the outlet nodes at the completion of each component simulation

The data flows from the inlet nodes into the component internal data structure(s) and
then into the outlet nodes. Let us see how this works in our example module Fans.

At the start of the module, the component internal data structure is defined.

TYPE FanEquipConditions
 CHARACTER(len=MaxNameLength) :: FanName ! Name of the fan
 CHARACTER(len=MaxNameLength) :: FanType ! Type of Fan ie. Simple, Vane axial, Centrifugal, etc.
 CHARACTER(len=MaxNameLength) :: Schedule ! Fan Operation Schedule
 CHARACTER(len=MaxNameLength) :: Control ! ie. Const Vol, Variable Vol
 Integer :: SchedPtr ! Pointer to the correct schedule
 REAL :: InletAirMassFlowRate !MassFlow through the Fan being Simulated [kg/Sec]
 REAL :: OutletAirMassFlowRate
 Real :: MaxAirFlowRate !Max Specified Volume Flow Rate of Fan [m^3/sec]
 Real :: MinAirFlowRate !Min Specified Volume Flow Rate of Fan [m^3/sec]
 REAL :: MaxAirMassFlowRate ! Max flow rate of fan in kg/sec
 REAL :: MinAirMassFlowRate ! Min flow rate of fan in kg/sec
 REAL :: InletAirTemp
 REAL :: OutletAirTemp
 REAL :: InletAirHumRat
 REAL :: OutletAirHumRat
 REAL :: InletAirEnthalpy
 REAL :: OutletAirEnthalpy
 REAL :: FanPower !Power of the Fan being Simulated [kW]
 REAL :: FanEnergy !Fan energy in [kJ]
 REAL :: DeltaTemp !Temp Rise across the Fan [C]
 REAl :: DeltaPress !Delta Pressure Across the Fan [N/M^2]
 REAL :: FanEff !Fan total efficiency; motor and mechanical
 REAL :: MotEff !Fan motor efficiency
 REAL :: MotInAirFrac !Fraction of motor heat entering air stream
 REAL, Dimension(5):: FanCoeff !Fan Part Load Coefficients to match fan type
 ! Mass Flow Rate Control Variables
 REAL :: MassFlowRateMaxAvail
 REAL :: MassFlowRateMinAvail
 INTEGER :: InletNodeNum
 INTEGER :: OutletNodeNum
 END TYPE FanEquipConditions

!MODULE VARIABLE DECLARATIONS:
 INTEGER :: NumFans ! The Number of Fans found in the Input
 TYPE (FanEquipConditions), ALLOCATABLE, DIMENSION(:) :: Fan

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 55

In this case, there is only one structure that stores all of the fan data. We could have
chosen to divide this rather large structure up into separate structures – one for input file
data, one for inlet data, and one for outlet data, for instance. Note that in Fortran 90
structures are called defined type. The TYPE – END TYPE construct defines a new
data structure. Then an allocatable array Fan of the defined type is created. This one-
dimensional array will contain an entry for each fan in the problem.

The internal data array is allocated (sized) in the “GetInput” routine GetFanInput.

NumSimpFan = GetNumObjectsFound('FAN:SIMPLE:CONSTVOLUME')
 NumVarVolFan = GetNumObjectsFound('FAN:SIMPLE:VARIABLEVOLUME')
 NumOnOff = GetNumObjectsFound('FAN:SIMPLE:ONOFF')
 NumZoneExhFan = GetNumObjectsFound('ZONE EXHAUST FAN')
 NumFans = NumSimpFan + NumVarVolFan + NumZoneExhFan+NumOnOff
 IF (NumFans.GT.0) ALLOCATE(Fan(NumFans))

The remainder of the “GetInput” routine moves input file data into the Fan array. The
“Init” routine transfers data from the inlet nodes into the same array in preparation for
performing the calculation.

 ! Load the node data in this section for the component simulation
 !
 !First need to make sure that the massflowrate is between the max and min avail.
 IF (Fan(FanNum)%FanType .NE. 'ZONE EXHAUST FAN') THEN
 Fan(FanNum)%InletAirMassFlowRate = Min(Node(InletNode)%MassFlowRate, &
 Fan(FanNum)%MassFlowRateMaxAvail)
 Fan(FanNum)%InletAirMassFlowRate = Max(Fan(FanNum)%InletAirMassFlowRate, &
 Fan(FanNum)%MassFlowRateMinAvail)
 ELSE ! zone exhaust fans - always run at the max
 Fan(FanNum)%MassFlowRateMaxAvail = Fan(FanNum)%MaxAirMassFlowRate
 Fan(FanNum)%MassFlowRateMinAvail = 0.0
 Fan(FanNum)%InletAirMassFlowRate = Fan(FanNum)%MassFlowRateMaxAvail
 END IF

 !Then set the other conditions
 Fan(FanNum)%InletAirTemp = Node(InletNode)%Temp
 Fan(FanNum)%InletAirHumRat = Node(InletNode)%HumRat
 Fan(FanNum)%InletAirEnthalpy = Node(InletNode)%Enthalpy

The “Calc” routines do the actual component simulation. All the data they need has been
stored in the internal data array ready to be used. The results of the calculation are, in
this case, stored in the same array. The “Calc” routine always does pure
calculation/simulation – it never retrieves or stores data.

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 56

DeltaPress = Fan(FanNum)%DeltaPress
 FanEff = Fan(FanNum)%FanEff

 ! For a Constant Volume Simple Fan the Max Flow Rate is the Flow Rate for the fan
 Tin = Fan(FanNum)%InletAirTemp
 Win = Fan(FanNum)%InletAirHumRat
 RhoAir = RhoAirFn(OutBaroPress,Tin,Win)
 MassFlow = MIN(Fan(FanNum)%InletAirMassFlowRate,Fan(FanNum)%MaxAirMassFlowRate)
 MassFlow = MAX(MassFlow,Fan(FanNum)%MinAirMassFlowRate)
 !
 !Determine the Fan Schedule for the Time step
 If((GetCurrentScheduleValue(Fan(FanNum)%SchedPtr) .gt. 0.0) .and. &
 (Massflow .gt. 0.0)) Then
 !Fan is operating
 Fan(FanNum)%FanPower = MassFlow*DeltaPress/(FanEff*RhoAir) ! total fan power
 FanShaftPower = Fan(FanNum)%MotEff * Fan(FanNum)%FanPower ! power delivered to shaft
 PowerLossToAir = FanShaftPower + (Fan(FanNum)%FanPower - FanShaftPower) * &
 Fan(FanNum)%MotInAirFrac
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy + PowerLossToAir/MassFlow
 ! This fan does not change the moisture or Mass Flow across the component
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirMassFlowRate = MassFlow
 Fan(FanNum)%OutletAirTemp = Psythw(Fan(FanNum)%OutletAirEnthalpy,Fan(FanNum)%OutletAirHumRat)

 Else
 !Fan is off and not operating no power consumed and mass flow rate.
 Fan(FanNum)%FanPower = 0.0
 FanShaftPower = 0.0
 PowerLossToAir = 0.0
 Fan(FanNum)%OutletAirMassFlowRate = 0.0
 Fan(FanNum)%OutletAirHumRat = Fan(FanNum)%InletAirHumRat
 Fan(FanNum)%OutletAirEnthalpy = Fan(FanNum)%InletAirEnthalpy
 Fan(FanNum)%OutletAirTemp = Fan(FanNum)%InletAirTemp
 ! Set the Control Flow variables to 0.0 flow when OFF.
 Fan(FanNum)%MassFlowRateMaxAvail = 0.0
 Fan(FanNum)%MassFlowRateMinAvail = 0.0

 End If

Finally, the “Update” routine (UpdateFan) moves the results from the internal data array
into the outlet node(s).

 OutletNode = Fan(FanNum)%OutletNodeNum
 InletNode = Fan(FanNum)%InletNodeNum

 ! Set the outlet air nodes of the fan
 Node(OutletNode)%MassFlowRate = Fan(FanNum)%OutletAirMassFlowRate
 Node(OutletNode)%Temp = Fan(FanNum)%OutletAirTemp
 Node(OutletNode)%HumRat = Fan(FanNum)%OutletAirHumRat
 Node(OutletNode)%Enthalpy = Fan(FanNum)%OutletAirEnthalpy
 ! Set the outlet nodes for properties that just pass through & not used
 Node(OutletNode)%Quality = Node(InletNode)%Quality
 Node(OutletNode)%Press = Node(InletNode)%Press

 ! Set the Node Flow Control Variables from the Fan Control Variables
 Node(OutletNode)%MassFlowRateMaxAvail = Fan(FanNum)%MassFlowRateMaxAvail
 Node(OutletNode)%MassFlowRateMinAvail = Fan(FanNum)%MassFlowRateMinAvail

 IF (Fan(FanNum)%FanType .EQ. 'ZONE EXHAUST FAN') THEN
 Node(InletNode)%MassFlowRate = Fan(FanNum)%InletAirMassFlowRate
 END IF

Certain data items must always be transferred from inlet nodes to outlet nodes even if
the data item is unaltered by the component model. The data items that must be
transferred are:

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 57

1. Temp

2. HumRat

3. Enthalpy

4. Press

5. MassFlowRate

6. MassFlowRateMaxAvail

7. MassFlowRateMinAvail

Node Mass Flow Variables

The node mass flow variables merit a little more discussion. Five mass flow variables
are defined at each node. They are: MassFlowRate, MassFlowRateMin,
MassFlowRateMax, MassFlowRateMinAvail and MassFlowRateMaxAvail. These
variables hold loop mass flow rate information according to the following definitions.

• MassFlowRate – this node variable holds the simulation mass flow rate for the
current timestep. The component simulation retrieves this mass flow rate from its
inlet node (“Init” routine) and uses it as the initial mass flow rate in the simulation.
The component simulation may or may not change the mass flow rate. In any case, it
writes the value out to the exit node in the “Update” routine.

• MassFlowRateMax, MassFlowRateMin – These node variables hold the maximum
possible and the minimum allowable flow rates for a particular component. As such,
they represent the “hardware limit” on the flow rate for the component. By
convention, these variables are stored at the component outlet node. Since
components share their nodes (the outlet node of one component is the inlet node of
the next component), the protocol must be strictly followed. These variables are set
by each component at the beginning of the simulation and are never reset thereafter.

• MassFlowRateMaxAvail, MassFlowRateMinAvail – these node variables represent
the loop maximum and minimum flow rate for the current configuration of the loop on
which the component resides. All components should change the max/min available
values so that they lie within the max/min flow rate range for the component. The
component simulation reads the current loop min/max available flow rate from its
inlet node (“Init” routine) and writes the updated min/max available flow rate to its
outlet node (“Update” routine).

The component simulation retrieves MassFlowRate, MassFlowRateMinAvail, and
MassFlowRateMaxAvail along with other node variables from its input node prior to the
simulation of the component. The flow rate must be checked and if necessary adjusted
prior to the simulation: the MassFlowRate must be bounded by MassFlowRateMaxAvail
and MassFlowRateMinAvail, which in turn must be bounded by MassFlowRateMax and
MassFlowRateMin for the component. The following steps should be followed in the
initialization stage of the component simulation.

MODULE DEVELOPER'S GUIDE HVAC NETWORK

4/26/02 58

a) Compare the MassFlowRateMinAvail and MassFlowRateMaxAvail retrieved from the
input node with the MassFlowRateMin and MassFlowRateMax for your component. If
of the retrieved values are out of bounds, replace that value with either the Max or
Min for the component.

b) Compare the MassFlowRate retrieved from the inlet node with the
MassFlowRateMinAvail and MassFlowRateMaxAvail. If MassFlowRate is not
bounded by MassFlowRateMinAvail and MassFlowRateMaxAvail, reset
MassFlowRate to the nearest boundary value.

If the component model calculates MassFlowRate, it must be bounded by
MassFlowRateMin and MassFlowRateMax. Following the component simulation, the
MassFlowRate and the bounding MassFlowRateMinAvail and MassFlowRateMaxAvail
should be written to the outlet node along with the other updated loop variables.

MODULE DEVELOPER'S GUIDE OUTPUT

4/26/02 59

Output

There are several output files available in EnergyPlus. As you can see in the Appendix
A, DataGlobals contains OutputFileStandard, OutputFileInits, and OutputFileDebug.

OutputFileDebug is initialized very early in the EnergyPlus execution and is available for
any debugging output the developer might need.

OutputFileInits is intended for “one-time” outputs and has not been extensively used to
date. The structure will be similar to the IDD/IDF structure in that there will be a
“definition” line followed by the data being reported.

OutputFileStandard is the usual output file from EnergyPlus. You can read more details
from the Guide for Interface Developers document. There is an Output section there as
well as the keywords for obtaining those outputs.

How Do I Output My Variables?

 Module developers are responsible for “setting” up the variables that will appear in the
OutputFileStandard.

To do this is very simple. All you need to do is place a simple call to
SetupOutputVariable for each variable to be available for reporting into your module.
This call should be done only once for each Variable/KeyedValue pair (see below). For
HVAC and Plant components, this call is usually at the end of the “GetInput” subroutine.
See the example module for an illustration of this. Other calls in the simulation routines
will invoke the EnergyPlus OutputProcessor automatically at the proper time to have the
data appear in the OutputFileStandard.

For you the call is:

Call SetupOutputVariable(VariableName,ActualVariable, &
 IndexTypeKey, VariableTypeKey,KeyedValue,ReportFreq &
 ResourceTypeKey,EndUseKey,GroupKey)

Interface statements allow for the same call to be used for either real or integer
“ActualVariable” variables. A few examples from EnergyPlus and then we will define the
arguments:

CALL SetupOutputVariable('Outdoor Dry Bulb [C]', &
 OutDryBulbTemp,'Zone', &
 'Average','Environment')

CALL SetupOutputVariable('Mean Air Temperature[C]', &
 ZnRpt(Loop)%MeanAirTemp,'Zone', &
 'State',Zone(Loop)%Name)

CALL SetupOutputVariable('Fan Coil Heating Energy[J]', &
 FanCoil(FanCoilNum)%HeatEnergy,'System', &
 'Sum',FanCoil(FanCoilNum)%Name)
CALL SetupOutputVariable('Humidifier Electric Consumption[J]',
 Humidifier(HumNum)%ElecUseEnergy, &
 'System','Sum', &
 Humidifier(HumNum)%Name,&
 ResourceTypeKey='ELECTRICITY',&
 EndUseKey = 'HUMIDIFIER',&
 GroupKey = 'System')

MODULE DEVELOPER'S GUIDE OUTPUT

4/26/02 60

SetupOutputVariable
Arguments

Description

VariableName String name of variable, units should be included in []. If no
units, use []

ActualVariable This should be the actual variable that will store the value.
The OutputProcessor sets up a pointer to this variable, so it
will need to be a SAVEd variable if in a local routine. As
noted in examples, can be a simple variable or part of an
array/derived type.

IndexTypeKey When this variable has its proper value. ‘Zone’ is used for
variables that will have value on the global timestep (alias
“HeatBalance”). ‘HVAC’ is used for variables that will have
values calculated on the variable system timesteps (alias
“System”, “Plant”)

VariableTypeKey Two kinds of variables are produced. ‘State’ or ‘Average’
are values that are instantaneous at the timestep (zone air
temperature, outdoor weather conditions). ‘NonState’ or
‘Sum’ are values which need to be summed for a period
(energy).

KeyedValue Every variable to be reported needs to have an associated
keyed value. Zone Air Temperature is available for each
Zone, thus the keyed value is the Zone Name.

ReportFreq This optional argument should only be used during
debugging of your module but it is provided for the
developers so that these variables would always show up in
the OutputFile. (All other variables must be requested by
the user).

ResourceTypeKey Meter Resource Type; an optional argument used for
including the variable in a meter. The meter resource type
can be 'Electricity', ‘Gas’, ‘Coal’, ‘FuelOil#1’, ‘FuelOil#2’,
‘Propane’, ‘Water’, or ‘EnergyTransfer’.

EndUseKey Meter End Use Key; an optional argument used when the
variable is included in a meter. The end us keys can be:
'GeneralLights', ‘TaskLights’, 'ExteriorLights', 'Heating',
‘Cooling’, 'DHW', 'Cogeneration', 'ExteriorEquipment',
'ZoneSource', 'PurchasedHotWater',
'PurchasedChilledWater', 'Fans', 'HeatingCoils',
'CoolingCoils', 'Pumps', 'Chillers', 'Boilers', 'Baseboard',
'HeatRejection', 'Humidifier', 'HeatRecovery', or
'Miscellaneous'.

GroupKey Meter Super Group Key; an optional arument used when
the variable is included in a meter. The group key denotes
whether the variable belongs to the building, system, or
plant.The choices are: 'Building', 'HVAC' or 'Plant'.

Table 2. SetupOutputVariable Arguments

As described in the Input Output Reference, not all variables may be available in any
particular simulation. Only those variables that will have values generated will be

MODULE DEVELOPER'S GUIDE OUTPUT

4/26/02 61

available for reporting. In the IDF, you can include a “Report Variable Dictionary”
command that will produce the eplusout.rdd file containing all the variables with their
IndexTypeKeys. This list can be used to tailor the requests for values in the
OutputFileStandard.

Output Variable Dos and Don’ts

For general output variables there aren’t many rules. For meter output variables there
are quite a few. Here are some tips to keep you out of trouble.

What Variables Should I Output?

The choice of variables to output is really up to the developer. Since variables don’t
appear on the output file unless requested by the user in the IDF input file, it is better to
“SetUp” too many rather than too few. For an HVAC component one should generally
output the heating and cooling outputs of the component both in terms of energy and
power. Energy is always output in Joules, power in Watts. If there is humidification or
dehumidification both total and sensible cooling should be reported. Any electricity or
fuel consumed by a component should be reported out, again both in terms of energy
(Joules) and power (Watts). For HVAC components in most cases reporting inlet and
outlet temperatures and humidites is unnecessary since these quantities can be
obtained from the system node outputs.

Output Variable Naming Conventions

We have tried to obtain some consistency in variable names by defining some naming
conventions. The heating and/or cooling output is always reported as:

<component-type> Heating Rate[W]
<component-type> Heating Energy[J]
<component-type> Total Cooling Rate[W]
<component-type> Total Cooling Energy[W]
<component-type> Sensible Cooling Rate[W]
<component-type> Sensible Cooling Energy[J]

Fuel and electricity consumption is reported as:

<component-type> Electric Power[W]
<component-type> Electric Consumption[J]
<component-type> Gas Consumption Rate[W]
<component-type> Gas Consumption[J]

Water addition is reported as:

<component-type> Water Consumption Rate[m3/s]
<component-type> Water Consumption[m3]

Units are always strictly SI and no abbreviations are allowed in the variable name.
<component-type> is the type of component. It should not be the actual object class
name from the IDD file, but rather one step of generality above this. For example for
fancoils we have:

Fan Coil Total Cooling Energy[J]

Here <component-type> is “Fan Coil”, not FAN COIL UNIT:4 PIPE.

What are Meters?

In EnergyPlus meters are an additional output reporting capability. A meter is a way of
grouping similar output variables. Meters are output variables just like ordinary output

MODULE DEVELOPER'S GUIDE OUTPUT

4/26/02 62

variables except that they sum or average a collection of ordinary output variables. In
EnergyPlus the meter variables serve two purposes.

1. Providing output of fuel and electricity consumption by end use categories and at the
system plant, building and facility level.

2. Providing a way of summing heating or cooling outputs for a category of
components. The resource type EnergyTransfer is used for this purpose. An
example would be reporting out the sum of the heating energy from all the heating
coils in a system.

How Do I Create A Meter?

Meter output variables are created at the same time and in the same manner a ordinary
output variables. SetupOutputVariable is called but the optional arguments
ResourceTypeKey, EndUseKey, and GroupKey must be used in addition to the usual
arguments. For example, in the electric steam humidifier module

CALL SetupOutputVariable('Humidifier Electric Consumption[J]', &
 Humidifier(HumNum)%ElecUseEnergy, 'System','Sum', &
 Humidifier(HumNum)%Name)

creates an output variable labeled 'Humidifier Electric Consumption[J]' with the value of
Humidifier(HumNum)%ElecUseEnergy.

CALL SetupOutputVariable('Humidifier Electric Consumption[J]', &
 Humidifier(HumNum)%ElecUseEnergy, 'System','Sum', &
 Humidifier(HumNum)%Name, &
 ResourceTypeKey='ELECTRICITY',EndUseKey = 'HUMIDIFIER', &
 GroupKey = 'System')

Creates the same output variable but in addition creates a meter output variable
Humidifier:Electricity [J]. This variable will contain the sum of all the electricity
consumption of the humidifiers in the system. In addition, this electrical consumption will
be added into the meter variables Electricity:HVAC [J] and Electricity:Facility [J].

Rules for Meter Variables

There are a number of rules developers must follow in order to account for all electricity
and fuel consumption as well as to prevent consumables being double counted.

1. Electricity and fuel meters must always be defined at the simple component level.
Some EnergyPlus components are compound components: they are built up from
simple components. Examples are fan coils (composed of heating coils, cooling
coils, and fans), terminal units etc. Some example simple components are heating
and cooling coils, fans, humidifiers etc. Electricity and fuel consumption should
always be metered at the simple component level and never at the compound
component level. This prevents double counting of the fuel or energy consumption.

2. A variable should be metered once only. This means a variable can be assigned to
only one resource type and to only one end use category.

3. Energy Transfer should be metered in the same way as fuel or electricity use.
Energy Transfer meters should only be defined for simple components and should
be assigned the same end use category as the fuel or electricity consumption.

4. All fuel and electricity consumption must be put in some (one) meter.

MODULE DEVELOPER'S GUIDE OUTPUT

4/26/02 63

5. Use Energy Transfer judiciously; if in doubt, leave it out.

MODULE DEVELOPER'S GUIDE IMPORTANT RULES FOR MODULE DEVELOPERS

4/26/02 64

Important Rules for Module Developers

1. INITIALIZE!!!!! INITIALIZE either fully or "invalidly" when you ALLOCATE
the array/derived type. Two items have been set up to help you: BigNumber
and DBigNumber are in DataGlobals. They get initialized before anything
happens in the main routine (EnergyPlus). An invalid initialization will use one
of these, appropriately, -- don't know yet if this will trigger an exception when
used...

2. Warning errors during "get input" probably aren't. Each GetInput routine
should be structured so that errors detected (such as an invalid schedule
name which currently is just a warning) cause a fatal error after all the input
for that item/module/etc is gotten. (See HBManager, BaseboardRadiator,
others) In addition, don't make GetInputFlag a module variable. Make it as
"local" as possible. Look at BaseboardRadiator for an example.

3. Error messages during simulation should be semi-intelligent. No one
wants to see 5,000 messages saying "this flow invalid". If it might happen a
lot (especially during debugging), count them and only put out a message
every 50 or so. (See some routine in Resolver code). Also, if you are putting
the same message in two modules, identify the error message with some
designation. For Example, CALL ShowWarningError('SimRoutinename: this
condition happened again') will help everyone track it down.

4. Use the templates for documentation! Modules, subroutines, functions
templates all have been checked into StarTeam. Use them. Put INTENTs on
your Subroutine Arguments. Document variables.

MODULE DEVELOPER'S GUIDE APPENDIX A. DATAGLOBALS MODULE

4/26/02 65

Appendix A. DataGlobals Module

MODULE DataGlobals ! EnergyPlus Data-Only Module

 ! MODULE INFORMATION:
 ! AUTHOR Rick Strand
 ! DATE WRITTEN January 1997
 ! MODIFIED May 1997 (RKS) Added Weather Variables
 ! MODIFIED December 1997 (RKS,DF,LKL) Split into DataGlobals and
 ! DataEnvironment
 ! MODIFIED February 1999 (FW) Added NextHour, WGTNEXT, WGTNOW
 ! MODIFIED September 1999 (LKL) Rename WGTNEXT,WGTNOW for clarity
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS MODULE:
 ! This data-only module is a repository for all variables which are considered
 ! to be "global" in nature in EnergyPlus.

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! OTHER NOTES:
 ! na

 ! USE STATEMENTS:
 ! None!--This module is USEd by all other modules; it should not USE anything.

IMPLICIT NONE ! Enforce explicit typing of all variables

PUBLIC ! By definition, all variables which are placed in this data
 ! -only module should be available to other modules and routines.
 ! Thus, all variables in this module must be PUBLIC.

 ! MODULE PARAMETER DEFINITIONS:
 !Loop fluid identifiers
!INTEGER, PARAMETER:: Water =1 ! saturated to compressed liquid
!INTEGER, PARAMETER:: Steam =2 ! saturated and superheated conditions
!INTEGER, PARAMETER:: EthGlycol =3 ! ethylene glycol brine of various concentrations
!INTEGER, PARAMETER:: Propglycol=4 ! propylene glycol brine of various concentrations
!INTEGER, PARAMETER:: CaChloride=5 ! calcium chloride brine of various concentrations
!INTEGER, PARAMETER:: NaChloride=6 ! sodium chloride brine of various concentrations
!INTEGER, PARAMETER:: Refrig =7 ! currently, "generic" refrigerant...the parameter
 ! list may be extended to include a number of specific
 ! refrigerants

INTEGER, PARAMETER :: BeginDay = 1
INTEGER, PARAMETER :: DuringDay = 2
INTEGER, PARAMETER :: EndDay = 3
INTEGER, PARAMETER :: EndZoneSizingCalc = 4
INTEGER, PARAMETER :: EndSysSizingCalc = 5

INTEGER, PARAMETER :: ZoneTSReporting=1 ! value for Zone Time Step Reporting-UpdateDataAndReport
INTEGER, PARAMETER :: HVACTSReporting=2 ! value for HVAC Time Step Reporting-UpdateDataAndReport

REAL, PARAMETER :: PI= 3.141592653589793 ! Pi
REAL, PARAMETER :: PiOvr2 = PI/2. ! Pi/2
REAL, PARAMETER :: DegToRadians = PI/180. ! Conversion for Degrees to Radians
INTEGER, PARAMETER :: MaxNameLength = 60 ! Maximum Name Length in Characters -- should be the same
 ! as MaxAlphaArgLength in InputProcessor module

REAL, PARAMETER :: InitConvTemp = 5.05 ! [deg C], standard init vol to mass flow conversion
! temp
INTEGER, PARAMETER :: MaxSlatAngs = 19

MODULE DEVELOPER'S GUIDE APPENDIX A. DATAGLOBALS MODULE

4/26/02 66

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 INTERFACE
 SUBROUTINE ShowMessage(Message,Unit1,Unit2)
 ! Use when you want to create your own message for the error file.
 CHARACTER(len=*) Message ! Message automatically written to "error file"
 INTEGER, OPTIONAL :: Unit1 ! Unit number of open formatted file for message
 INTEGER, OPTIONAL :: Unit2 ! Unit number of open formatted file for message
 END SUBROUTINE
 END INTERFACE
 INTERFACE
 SUBROUTINE ShowContinueError(Message,Unit1,Unit2)
 ! Use when you are "continuing" an error message over several lines.
 CHARACTER(len=*) Message ! Message automatically written to "error file"
 INTEGER, OPTIONAL :: Unit1 ! Unit number of open formatted file for message
 INTEGER, OPTIONAL :: Unit2 ! Unit number of open formatted file for message
 END SUBROUTINE
 END INTERFACE
 INTERFACE
 SUBROUTINE ShowFatalError(Message,Unit1,Unit2)
 ! Use when you want the program to terminate after writing messages
 ! to appropriate files
 CHARACTER(len=*) Message ! Message automatically written to "error file"
 INTEGER, OPTIONAL :: Unit1 ! Unit number of open formatted file for message
 INTEGER, OPTIONAL :: Unit2 ! Unit number of open formatted file for message
 END SUBROUTINE
 END INTERFACE
 INTERFACE
 SUBROUTINE ShowSevereError(Message,Unit1,Unit2)
 ! Use for "severe" error messages. Might have several severe tests and then terminate.
 CHARACTER(len=*) Message ! Message automatically written to "error file"
 INTEGER, OPTIONAL :: Unit1 ! Unit number of open formatted file for message
 INTEGER, OPTIONAL :: Unit2 ! Unit number of open formatted file for message
 END SUBROUTINE
 END INTERFACE
 INTERFACE
 SUBROUTINE ShowWarningError(Message,Unit1,Unit2)
 ! Use for "warning" error messages.
 CHARACTER(len=*) Message ! Message automatically written to "error file"
 INTEGER, OPTIONAL :: Unit1 ! Unit number of open formatted file for message
 INTEGER, OPTIONAL :: Unit2 ! Unit number of open formatted file for message
 END SUBROUTINE
 END INTERFACE

 INTERFACE SetupOutputVariable
 SUBROUTINE
SetupRealOutputVariable(VariableName,ActualVariable,IndexTypeKey,VariableTypeKey,KeyedValue, &
 ReportFreq,ResourceTypeKey,EndUseKey,GroupKey)
 CHARACTER(len=*), INTENT(IN) :: VariableName ! String Name of variable
 REAL, INTENT(IN), TARGET :: ActualVariable ! Actual Variable, used to set up pointer
 CHARACTER(len=*), INTENT(IN) :: IndexTypeKey ! Zone, HeatBalance=1, HVAC, System, Plant=2
 CHARACTER(len=*), INTENT(IN) :: VariableTypeKey ! State, Average=1, NonState, Sum=2
 CHARACTER(len=*), INTENT(IN) :: KeyedValue ! Associated Key for this variable
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: ReportFreq ! Internal use -- causes reporting
at this freqency
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: ResourceTypeKey ! Meter Resource Type
(Electricity, Gas, etc)
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: EndUseKey ! Meter End Use Key (Task Lights,
Heating, Cooling, etc)
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: GroupKey ! Meter Super Group Key (Building,
System, Plant)
 END SUBROUTINE
 SUBROUTINE
SetupIntegerOutputVariable(VariableName,IntActualVariable,IndexTypeKey,VariableTypeKey,KeyedValue,
ReportFreq)
 CHARACTER(len=*), INTENT(IN) :: VariableName ! String Name of variable
 INTEGER, INTENT(IN), TARGET :: IntActualVariable ! Actual Variable, used to set up pointer
 CHARACTER(len=*), INTENT(IN) :: IndexTypeKey ! Zone, HeatBalance=1, HVAC, System, Plant=2

MODULE DEVELOPER'S GUIDE APPENDIX A. DATAGLOBALS MODULE

4/26/02 67

 CHARACTER(len=*), INTENT(IN) :: VariableTypeKey ! State, Average=1, NonState, Sum=2
 CHARACTER(len=*), INTENT(IN) :: KeyedValue ! Associated Key for this variable
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: ReportFreq ! Internal use -- causes reporting
at this freqency
 END SUBROUTINE
 SUBROUTINE
SetupRealOutputVariable_IntKey(VariableName,ActualVariable,IndexTypeKey,VariableTypeKey,KeyedValue
, &
 ReportFreq,ResourceTypeKey,EndUseKey,GroupKey)
 CHARACTER(len=*), INTENT(IN) :: VariableName ! String Name of variable
 REAL, INTENT(IN), TARGET :: ActualVariable ! Actual Variable, used to set up pointer
 CHARACTER(len=*), INTENT(IN) :: IndexTypeKey ! Zone, HeatBalance=1, HVAC, System, Plant=2
 CHARACTER(len=*), INTENT(IN) :: VariableTypeKey ! State, Average=1, NonState, Sum=2
 INTEGER, INTENT(IN) :: KeyedValue ! Associated Key for this variable
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: ReportFreq ! Internal use -- causes reporting
at this freqency
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: ResourceTypeKey ! Meter Resource Type
(Electricity, Gas, etc)
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: EndUseKey ! Meter End Use Key (Task Lights,
Heating, Cooling, etc)
 CHARACTER(len=*), INTENT(IN), OPTIONAL :: GroupKey ! Meter Super Group Key (Building,
System, Plant)
 END SUBROUTINE
 END INTERFACE

 INTERFACE SetupRealInternalOutputVariable
 INTEGER FUNCTION
SetupRealInternalOutputVariable(VariableName,ActualVariable,IndexTypeKey,VariableTypeKey, &
 KeyedValue,ReportFreq)
 CHARACTER(len=*), INTENT(IN) :: VariableName ! String Name of variable
 CHARACTER(len=*), INTENT(IN) :: IndexTypeKey ! Zone, HeatBalance or HVAC, System, Plant
 CHARACTER(len=*), INTENT(IN) :: VariableTypeKey ! State, Average, or NonState, Sum
 REAL, INTENT(IN), TARGET :: ActualVariable ! Actual Variable, used to set up pointer
 CHARACTER(len=*), INTENT(IN) :: KeyedValue ! Associated Key for this variable
 CHARACTER(len=*), INTENT(IN) :: ReportFreq ! Frequency to store
'timestep','hourly','monthly','environment'
 END FUNCTION
 END INTERFACE

 INTERFACE GetInternalVariableValue
 REAL FUNCTION GetInternalVariableValue(WhichVar)
 INTEGER, INTENT(IN) :: WhichVar ! Report number assigned to this variable
 END FUNCTION
 END INTERFACE

 ! MODULE VARIABLE DECLARATIONS:

LOGICAL :: BeginDayFlag ! Set to true at the start of each day, set to false after first
time step in day
LOGICAL :: BeginEnvrnFlag ! Set to true at the start of each environment, set to false after
first time step in environ
LOGICAL :: BeginHourFlag ! Set to true at the start of each hour, set to false after first
time step in hour
LOGICAL :: BeginSimFlag ! Set to true until any actual simulation (full or sizing) has
begun, set to
 ! false after first time step
LOGICAL :: BeginFullSimFlag ! Set to true until full simulation has begun, set to
 ! false after first time step
LOGICAL :: BeginTimeStepFlag ! Set to true at the start of each time step, set to false after
first subtime step of time step
REAL :: BigNumber ! Max Number (real) used for initializations
DOUBLE PRECISION :: DBigNumber ! Max Number (double precision) used for initializations
INTEGER :: DayOfSim ! Counter for days (during the simulation)
LOGICAL :: EndEnvrnFlag ! Set to true at the end of each environment (last time step of
last hour of last day of environ)
LOGICAL :: EndDayFlag ! Set to true at the end of each day (last time step of last hour
of day)
LOGICAL :: EndHourFlag ! Set to true at the end of each hour (last time step of hour)
INTEGER :: HourOfDay ! Counter for hours in a simulation day
INTEGER :: NextHour ! Next hour index
REAL :: WeightNextHour ! Weighting of value for next hour

MODULE DEVELOPER'S GUIDE APPENDIX A. DATAGLOBALS MODULE

4/26/02 68

REAL :: WeightNow ! Weighting of value for current hour
INTEGER :: NumOfDayInEnvrn ! Number of days in the simulation for a particular environment
INTEGER :: NumOfTimeStepInHour ! Number of time steps in each hour of the simulation
INTEGER :: NumOfZones ! Total number of Zones for simulation
INTEGER :: TimeStep ! Counter for time steps (fractional hours)
REAL :: TimeStepZone ! Zone time step in fractional hours
LOGICAL :: WarmupFlag ! Set to true during the warmup portion of a simulation
INTEGER :: OutputFileStandard ! Unit number for the standard output file (hourly data only)
INTEGER :: OutputFileInits ! Unit number for the standard Initialization output file
INTEGER :: OutputFileDebug ! Unit number for debug outputs
INTEGER :: OutputFileZoneSizing ! Unit number of zone sizing calc output file
INTEGER :: OutputFileSysSizing ! Unit number of system sizing calc output file
INTEGER :: OutputFileMeters ! Unit number for meters output
INTEGER :: OutputFileBNDetails ! Unit number for Branch-Node Details
LOGICAL :: DebugOutput
LOGICAL :: EvenDuringWarmup
LOGICAL :: ZoneSizingCalc = .FALSE. ! TRUE if zone sizing calculation
LOGICAL :: SysSizingCalc = .FALSE. ! TRUE if system sizing calculation
LOGICAL :: DoZoneSizing ! User input in RUN CONTROL object
LOGICAL :: DoSystemSizing ! User input in RUN CONTROL object
LOGICAL :: DoPlantSizing ! User input in RUN CONTROL object
LOGICAL :: DoDesDaySim ! User input in RUN CONTROL object
LOGICAL :: DoWeathSim ! User input in RUN CONTROL object
LOGICAL :: WeatherFile ! TRUE if current environment is a weather file
LOGICAL :: DoOutputReporting ! TRUE if variables to be written out
REAL :: CurrentTime ! CurrentTime, in fractional hours, from start of day. Uses Loads
time step.
INTEGER :: SimTimeSteps ! Number of (Loads) timesteps since beginning of run period
(environment).
INTEGER :: MinutesPerTimeStep ! Minutes per time step calculated from NumTimeStepInHour (number
of minutes per load time step)
LOGICAL :: DisplayPerfSimulationFlag ! Set to true when "Performing Simulation" should be
displayed

! NOTICE
!
! Copyright © 1996-2002 The Board of Trustees of the University of Illinois
! and The Regents of the University of California through Ernest Orlando Lawrence
! Berkeley National Laboratory. All rights reserved.
!
! Portions of the EnergyPlus software package have been developed and copyrighted
! by other individuals, companies and institutions. These portions have been
! incorporated into the EnergyPlus software package under license. For a complete
! list of contributors, see "Notice" located in EnergyPlus.f90.
!
! NOTICE: The U.S. Government is granted for itself and others acting on its
! behalf a paid-up, nonexclusive, irrevocable, worldwide license in this data to
! reproduce, prepare derivative works, and perform publicly and display publicly.
! Beginning five (5) years after permission to assert copyright is granted,
! subject to two possible five year renewals, the U.S. Government is granted for
! itself and others acting on its behalf a paid-up, non-exclusive, irrevocable
! worldwide license in this data to reproduce, prepare derivative works,
! distribute copies to the public, perform publicly and display publicly, and to
! permit others to do so.
!
! TRADEMARKS: EnergyPlus is a trademark of the US Department of Energy.
!

END MODULE DataGlobals

MODULE DEVELOPER'S GUIDE APPENDIX B. DATAENVIRONMENT MODULE

4/26/02 69

Appendix B. DataEnvironment Module

MODULE DataEnvironment ! EnergyPlus Data-Only Module

 ! MODULE INFORMATION:
 ! AUTHOR Rick Strand, Dan Fisher, Linda Lawrie
 ! DATE WRITTEN December 1997
 ! MODIFIED November 1998, Fred Winkelmann
 ! MODIFIED June 1999,June 2000, Linda Lawrie
 ! RE-ENGINEERED na

 ! PURPOSE OF THIS MODULE:
 ! This data-only module is a repository for the variables that relate specifically
 ! to the "environment" (i.e. current date data, tomorrow's date data, and
 ! current weather variables)

 ! METHODOLOGY EMPLOYED:
 ! na

 ! REFERENCES:
 ! na

 ! OTHER NOTES:
 ! na

 ! USE STATEMENTS:
USE DataGlobals, ONLY: MaxNameLength
 ! None!--This module is USEd by all other modules; it should not USE anything.

IMPLICIT NONE ! Enforce explicit typing of all variables

PUBLIC ! By definition, all variables which are placed in this data
 ! -only module should be available to other modules and routines.
 ! Thus, all variables in this module must be PUBLIC.

 ! MODULE PARAMETER DEFINITIONS:
 ! na

 ! DERIVED TYPE DEFINITIONS
 ! na

 ! INTERFACE BLOCK SPECIFICATIONS
 ! na

 ! MODULE VARIABLE DECLARATIONS:

REAL :: BeamSolarRad ! Current beam normal solar irradiance
REAL :: CosSolarDeclinAngle ! Cosine of the solar declination angle
INTEGER :: DayOfMonth ! Current day of the month
INTEGER :: DayOfMonthTomorrow ! Tomorrow's day of the month
INTEGER :: DayOfWeek ! Current day of the week (Sunday=1, Monday=2, ...)
INTEGER :: DayOfWeekTomorrow ! Tomorrow's day of the week (Sunday=1, Monday=2, ...)
INTEGER :: DayOfYear ! Current day of the year (01JAN=1, 02JAN=2, ...)
REAL :: DifSolarRad ! Current sky diffuse solar horizontal irradiance
INTEGER :: DSTIndicator ! Daylight Savings Time Indicator (1=yes, 0=no) for Today
REAL :: Elevation ! Elevation of this building site
LOGICAL :: EndMonthFlag ! Set to true on last day of month
REAL :: EquationOfTime ! Value of the equation of time formula
REAL :: GndReflectanceForDayltg ! Ground visible reflectance for use in daylighting calc
REAL :: GndReflectance ! Ground visible reflectance from input
REAL :: GndSolarRad ! Current ground reflected radiation
REAL :: GroundTemp ! Current ground temperature
INTEGER :: HolidayIndex ! Indicates whether current day is a holiday and if so what
type
 ! HolidayIndex=(0-no holiday, 1-holiday type 1, ...)
INTEGER :: HolidayIndexTomorrow ! Tomorrow's Holiday Index
LOGICAL :: IsRain ! Surfaces are wet for this time interval

MODULE DEVELOPER'S GUIDE APPENDIX B. DATAENVIRONMENT MODULE

4/26/02 70

LOGICAL :: IsSnow ! Snow on the ground for this time interval
REAL :: Latitude ! Latitude of building location
REAL :: SinLatitude ! Sine of Latitude
REAL :: CosLatitude ! Cosine of Latitude
REAL :: Longitude ! Longitude of building location
INTEGER :: Month ! Current calendar month
INTEGER :: MonthTomorrow ! Tomorrow's calendar month
REAL :: OutBaroPress ! Current outdoor air barometric pressure
REAL :: OutDryBulbTemp ! Current outdoor air dry bulb temperature
REAL :: OutHumRat ! Current outdoor air humidity ratio
REAL :: OutRelHum ! Current outdoor relative humidity [%]
REAL :: OutRelHumValue ! Current outdoor relative humidity value [0.0-1.0]
REAL :: OutEnthalpy ! Current outdoor enthalpy
REAL :: OutAirDensity ! Current outdoor air density
REAL :: OutWetBulbTemp ! Current outdoor air wet bulb temperature
REAL :: OutDewPointTemp ! Current outdoor dewpoint temperature
REAL :: SinSolarDeclinAngle ! Sine of the solar declination angle
REAL :: SkyTemp ! Current sky temperature
LOGICAL :: SunIsUp ! True when Sun is over horizon, False when not
REAL :: WindDir ! Current outdoor air wind direction
REAL :: WindSpeed ! Current outdoor air wind speed
INTEGER :: Year ! Current calendar year of the simulation
INTEGER :: YearTomorrow ! Tomorrow's calendar year of the simulation
REAL, DIMENSION(3) :: SOLCOS ! Solar direction cosines at current time step
REAL :: CloudFraction ! Fraction of sky covered by clouds
REAL :: HISKF ! Exterior horizontal illuminance from sky (lum/m^2).
REAL :: HISUNF ! Exterior horizontal beam illuminance (lum/m^2)
REAL :: SkyClearness ! Sky clearness (see subr. DayltgLuminousEfficacy)
REAL :: SkyBrightness ! Sky brightness (see subr. DayltgLuminousEfficacy)
REAL :: StdBaroPress ! Standard "atmospheric pressure" based on elevation (ASHRAE
HOF p6.1)
REAL :: TimeZoneNumber ! Time Zone Number of building location
REAL :: TimeZoneMeridian ! Standard Meridian of TimeZone
CHARACTER(len=MaxNameLength) :: EnvironmentName ! Current environment name
CHARACTER(len=20) :: CurMnDyHr ! Current Month/Day/Hour timestamp info
CHARACTER(len=5) :: CurMnDy ! Current Month/Day timestamp info
INTEGER :: CurEnvirNum ! current environment number
Integer :: TotDesDays ! Total number of Design days to Setup

! NOTICE
!
! Copyright © 1996-2002 The Board of Trustees of the University of Illinois
! and The Regents of the University of California through Ernest Orlando Lawrence
! Berkeley National Laboratory. All rights reserved.
!
! Portions of the EnergyPlus software package have been developed and copyrighted
! by other individuals, companies and institutions. These portions have been
! incorporated into the EnergyPlus software package under license. For a complete
! list of contributors, see "Notice" located in EnergyPlus.f90.
!
! NOTICE: The U.S. Government is granted for itself and others acting on its
! behalf a paid-up, nonexclusive, irrevocable, worldwide license in this data to
! reproduce, prepare derivative works, and perform publicly and display publicly.
! Beginning five (5) years after permission to assert copyright is granted,
! subject to two possible five year renewals, the U.S. Government is granted for
! itself and others acting on its behalf a paid-up, non-exclusive, irrevocable
! worldwide license in this data to reproduce, prepare derivative works,
! distribute copies to the public, perform publicly and display publicly, and to
! permit others to do so.
!
! TRADEMARKS: EnergyPlus is a trademark of the US Department of Energy.
!

END MODULE DataEnvironment

	Introduction
	Modules in EnergyPlus
	What is a module anyway?
	Program Modules
	Data Only Modules

	What is a module developer?

	Input Concepts
	Input Data Dictionary
	Input Data File
	Input Considerations

	Module Structure
	Module Outline
	Module Example

	How it fits together
	Top Level Calling Tree
	High Level HVAC Calling Tree
	Air System Calling Tree
	Plant Supply Calling Tree
	Zone Equipment Calling Tree
	Inserting the New Module into the Program
	Considerations for Legacy Codes
	Code Readability vs. Speed of Execution

	EnergyPlus Services
	Global Data
	Input Services
	GetNumObjectsFound
	GetObjectItem
	GetNodeNums
	GetObjectItemNum
	FindItemInList
	SameString
	VerifyName

	Schedule Services
	GetScheduleIndex
	GetCurrentScheduleValue

	Performance Curve Services
	GetCurveIndex
	CurveValue

	Fluid Property Services
	Using Fluid Property Routines in EnergyPlus Modules
	Fluid Property Data and Expanding the Refrigerants Available to EnergyPlus

	Other Useful Utilities
	GetNewUnitNumber
	FindUnitNumber

	Weather Services
	Error Messages
	Flags and Parameters
	Parameters
	Simulation Flags

	Psychrometric services
	rhoairfn(pb,tdb,w)
	cpairfn(w,T)
	PSYDPT(TDB,TWB,PB)
	PSYDPW(W,PB)
	PSYHTW(TDB,W)
	PSYHTR(TDB,RH,PB)
	PSYTHW(H,W)
	PSYRHT(TDB,W,PB)
	PSYTWD(TDB,W,PB)
	PSYVTW(TDB,W,PB)
	PSYWDP(TDP,PB)
	PSYWTH(TDB,H)
	PSYWTP(TDB,TWB,PB)
	PSYWTR(TDB,RH,PB)
	SATUPT(T)
	SATUTH(H,PB)
	SATUTP(P)

	HVAC Network
	Branches, Connectors, and Nodes
	Nodes in the simulation
	Data Flow in an HVAC Component Module
	Node Mass Flow Variables

	Output
	How Do I Output My Variables?
	Output Variable Dos and Don’ts
	What Variables Should I Output?
	Output Variable Naming Conventions
	What are Meters?
	How Do I Create A Meter?
	Rules for Meter Variables

	Important Rules for Module Developers
	Appendix A. DataGlobals Module
	Appendix B. DataEnvironment Module
	Return to Aux/Dev Menu
	Return to Main Menu

